首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of granulosa cell conditioned media (CM) containing luteinization stimulator (LS), and the role of EGF in the cumulus expansion of oocyte-cumulus complexes (OCC) isolated from large antral follicles was investigated. The CM were prepared by incubation of granulosa cells isolated from large antral follicles. After 24h incubation, more than 61 or 64% of OCC expanded to the +3 and +4 stage in the presence of CM (50%) or EGF (10ng/ml), respectively. The stimulatory effect of LS and EGF on the cumulus expansion was accompanied by the enhanced hyaluronic acid synthesis. Complete suppression of cumulus expansion stimulated by LS and EGF was observed in the presence of 10 micromol/l genistein (tyrosine kinase inhibitor), in the presence of 10mmol/l LiCl (the inhibitor of inositol 1,4,5-trisphosphate metabolism), and 100 micromol/l gallopamil, verapamil and norverapamil (calcium channel blockers). Stimulatory effect of EGF on the cumulus expansion of OCC isolated from large follicles was accompanied by the increased cumulus cell progesterone production. However, EGF did not affect the progesterone production by OCC isolated from small follicles. To determine whether EGF could modulate the granulosa cell steroidogenesis also, the effect of EGF on granulosa cells isolated from large (LGC) and small (SGC) follicles was compared. EGF (10ng/ml) failed to affect the progesterone synthesis during 72h culture of SGC but significantly enhanced the LGC progesterone production. Our results indicate that luteinization factor stimulates the cumulus expansion and hyaluronic acid synthesis by the OCC isolated from large antral follicles. The mechanism of LS- and EGF-induced cumulus expansion may involve tyrosine kinase activation and calcium mobilization. In addition, these results indicate the different response of porcine cumulus and granulosa cells originating from small and large follicles on the stimulatory effect of EGF.  相似文献   

2.
Epidermal growth factor (EGF) efficiently stimulates expansion of mouse and rat oocyte-cumulus complexes (OCC). Contradictory data have been published by several laboratories about the ability of EGF to stimulate expansion of porcine OCC. We assumed that these contradictions may have resulted from heterogeneous conditions used for isolation, culture, and assessment of OCC. The present experiments were designed to test the hypothesis that porcine OCC acquire the ability to synthesize hyaluronic acid (HA) and undergo expansion following EGF-stimulation gradually during the growth of follicles. For this reason, we isolated OCC from follicles of different sizes and assessed quantity of produced HA and proportions of expanding OCC after stimulation by EGF. In addition, we assessed in those OCC changes in morphology of cumulus cells and assembly of F-actin microfilaments, which are necessary for expansion to occur. Finally, nuclear maturation of EGF-stimulated OCC was assessed and its relationship with occurrence of expansion was evaluated. In all experiments, OCC stimulated with FSH were used as positive controls. The results showed that EGF did not stimulate production of HA, rearrangement of F-actin and expansion in OCC isolated from small follicles (<4 mm in diameter). OCC isolated from large preovulatory follicles (6-7 mm in diameter and PMSG-stimulated follicles) underwent efficient expansion when stimulated by EGF (93% and 100%, respectively). EGF dramatically stimulated total production of HA in these OCC and its retention in extracellular matrix of the expanding cumulus. Cumulus cells of the large OCC underwent essential changes of their morphology and extensive rearrangement of F-actin microfilaments following stimulation with EGF. Interestingly, EGF enhanced nuclear maturation of OCC isolated from both small and large follicles, which suggest diversity of signaling pathways controlling maturation and expansion. FSH caused cumulus expansion, F-actin remodeling, and enhancement of oocyte nuclear maturation in OCC originated from both small and large follicles. We conclude that EGF can stimulate expansion of porcine OCC in vitro; however, only of those isolated from large follicles. This indicates that EGF may have a physiological role in regulation of porcine cumulus expansion in preovulatory follicles, presumably as a mediator of signals elicited by the LH surge.  相似文献   

3.
The role of alkaloids in cigarette smoke was investigated in the cumulus expansion of oocyte-cumulus complexes (OCC) isolated from large antral porcine follicles. Suppression of the cumulus expansion stimulated by FSH was observed in the presence of different concentration of cadmium, anabasine and nicotine but not its metabolite cotinine. There were comparable inhibitory effects of cadmium and nicotine on the synthesis and accumulation of hyaluronic acid in the cell/matrix compartment of OCC. The inhibitory effect of tested compounds on the cumulus expansion was accompanied by decreased progesterone synthesis by cumulus cells during 42 h incubation of OCC with FSH. The results suggest that cigarette smoking may affect intrafollicular processes, which are responsible for normal ovulation and fertilization.  相似文献   

4.
The present study was undertaken to examine effects of various combinations of epidermal growth factor (EGF), transforming growth factor-b?1 (TGF-b?1), follicle-stimulating hormone (FSH), luteinizing hormone (LH), androstenedione (A4), and estradiol-17b? (E2) on meiotic maturation and cumulus expansion in the pig using an in vitro model system. Oocyte-cumulus cell complexes (OCC) were cultured in the media containing the abovementioned agents for 24 hr and were observed for germinal vesicle breakdown (GVBD), indicative of initiation of meiotic maturation, and for expansion of their cumulus cells. Treatment with EGF significantly increased (P < 0.05) incidence of GVBD, with maximal stimulation occurring at 1 ng/ml (55% vs. 12% in the control). Concentrations of EGF as low as 100 pg/ml significantly stimulated GVBD over control (37% vs. 12%). Addition of EGF (1 ng/ml) and FSH (1.5 μg/ml) together and LH (2 μg/ml) and FSH (1.5 μg/ml) together resulted in significantly higher (P < 0.01) GVBD levels than were observed in response to EGF, FSH, or LH alone. Addition of E2 (1 μg/ml) had no effect by itself but significantly decreased the incidence of GVBD in the presence of FSH and of LH + FSH. Addition of A4 (1 μg/ml) significantly reduced the percentage of oocytes undergoing GVBD when added alone or with FSH. Although both EGF and LH stimulated cumulus expansion, FSH was more effective in stimulating cumulus expansion than EGF or LH. TGF-b?1 had no effect on GVBD or cumulus expansion. These studies indicate that these hormones may have differing roles in oocyte maturation and that their interactions may be part of an intricate system regulating the maturation of oocytes during follicular development in vivo. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The efficacy of follicle-stimulating hormone (FSH), epidermal growth factor (EGF), and dibutyryl cGMP (dbcGMP) as inducers of germinal vesicle breakdown (GVBD) in cumulus cell-enclosed mouse oocytes was examined when meiotic arrest was maintained in vitro with purines, dibutyryl cAMP (dbcAMP), or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). When FSH was added to hypoxanthine (HX)-containing medium, the effect on oocyte maturation was at first inhibitory and later stimulatory. EGF stimulated GVBD at all time points tested. FSH and EGF also induced GVBD when oocytes were arrested with dbcAMP, IBMX, or guanosine. Dibutyryl cGMP stimulated GVBD when meiotic arrest was maintained with HX, but not when oocytes were meiotically arrested with guanosine, and was inhibitory in dbcAMP-supplemented medium. FSH and dbcGMP produced a transient delay of oocyte maturation in control medium, but the FSH effect was much more pronounced. EGF had no effect on maturation kinetics. The actions of FSH and EGF required the presence of cumulus cells. Both agents significantly stimulated cAMP production in oocyte-cumulus cell complexes. A brief exposure of complexes to a high concentration of dbcAMP induced GVBD, suggesting that FSH and EGF may act via a cAMP-dependent process. The frequency of FSH- and EGF-induced GVBD in cumulus cell-enclosed oocytes was significantly higher than the frequency of GVBD when oocytes were cultured while denuded of cumulus cells. of maturation is apparently not mediated solely by oocyte-cumulus cell uncoupling and termination of the transfer of an inhibitory meiotic signal from cumulus cells to the oocyte. The data suggest the generation of a positive signal within cumulus cells in response to hormone treatment that acts upon the oocyte to stimulate GVBD in the continued presence of inhibitory factors.  相似文献   

6.
The release of a fertilizable oocyte from the ovary is dependent upon the expansion of the cumulus cells. The expansion requires cooperation between epidermal growth factor (EGF) family peptide‐activated mitogen‐activated protein kinase (MAPK)3/1 and oocyte paracrine factor‐activated‐Sma‐ and Mad‐related protein (SMAD)2/3 signaling in cumulus cells. However, the mechanism underlying (MAPK)3/1 signaling is unclear. In the present study, the EGF‐activation of EGF receptor (EGFR) induced cyclic adenosine 3′,5′‐monophosphate (cAMP) response element‐binding protein (CREB) phosphorylation in cumulus cells, and the interruption of CREB functional complex formation by naphthol AS‐E phosphate (KG‐501) completely blocked the EGF‐stimulated expansion‐related gene expression. EGF‐stimulated phosphorylation of CREB was completely inhibited by MAPK3/1 inhibitor U0126, suggesting that EGF‐activated MAPK3/1 results in the activation of CREB for cumulus expansion. Also, the role of EGF‐stimulated calcium signaling was studied. Calcium‐elevating reagents ionomycin and sphingosine‐1‐phosphate mimicked, but calcium chelators bis‐(o'aminophenoxy)‐ethane‐N,N,N,N‐tetraacetic acid, tetra(acetoxymethyl)‐ester, and 8‐(N,N‐diethylamino)‐octyl‐3,4,5‐trimethoxybenzoate abolished the activity of EGF on CREB phosphorylation, cumulus expansion, and expansion‐related gene expression. Furthermore, EGF‐induced cumulus expansion was inhibited by calmodulin (CaM)‐dependent protein kinase II (CaMKII) inhibitors, KN‐93 and autocamtide‐2‐related inhibitory peptide. However, the inhibition of SMAD2/3 activity by removal of oocyte from cumulus–oocyte complexes did not affect the EGF‐induced CREB phosphorylation, indicating that EGF‐activated CREB is independent of oocyte‐activated SMAD2/3 signaling. Therefore, EGF‐induced CREB activity by MAPK3/1 and Ca2+/CaMKII signaling pathways promotes the expansion‐related gene expression and consequent cumulus expansion.  相似文献   

7.
We have recently shown that epidermal growth factor (EGF) strongly stimulates expansion of porcine oocyte-cumulus complexes (OCCs) isolated from large follicles (>6 mm) and does not promote expansion of OCCs from small (3-4-mm) follicles. In order to elucidate the role of EGF in OCCs expansion, in the present study, we first examined the presence of EGF receptors (EGFRs) in cumulus cells isolated from follicles of different sizes. Surprisingly, immunoblotting showed that cumulus cells obtained from all follicular size categories contained similar amounts of EGFR protein. On the other hand, we found a dramatic difference in the pattern of protein tyrosine phosphorylation in a comparison of cumulus cells isolated from small and large follicles treated by EGF. Furthermore, tyrosine-phosphorylated EGFR was specifically immunoprecipitated with antiphosphotyrosine antibodies from EGF-treated cumulus cells isolated from the large follicles. This result strongly indicates that only OCCs from the large follicles contain mature EGFRs that are capable of becoming activated by EGF. Remarkably, preincubation of cumulus cells from small follicles (3-4 mm) with FSH strongly increased EGF-stimulated tyrosine phosphorylation to levels comparable with OCCs from large follicles. The FSH-dependent activation of EGFRs was beneficial for expansion of OCCs isolated from the small follicles since OCCs treated sequentially by FSH (3 h) and EGF (1 h) underwent expansion significantly better then OCCs cultured in FSH or EGF alone. We conclude that a FSH-dependent pathway has an important role in the maturation of the EGFR in cumulus cells and that activation of EGFR-dependent signaling is sufficient to induce expansion.  相似文献   

8.
9.
10.
The present study was undertaken to investigate the influence of epidermal growth factor (EGF) and follicle-stimulating hormone (FSH) during in vitro maturation on cytoplasmic maturation of porcine oocytes as revealed by the success of fertilization and by the changes in the pattern of protein synthesis in oocytes and cumulus cells. For fertilization studies, oocyte-cumulus cell complexes (OCC) were cultured in media containing human recombinant EGF (1 ng/ml) or FSH (1.5 μg/ml) or both for 44 hr prior to fertilization with fresh sperm for 6–8 hr. The oocytes were then fixed, stained, and examined as whole mounts following an additional 14 hr of culture. Addition of EGF, FSH, and EGF + FSH significantly increased the proportion of oocytes reaching MII stage. The addition of EGF alone significantly decreased the percentage of polyspermic oocytes and increased the proportion of monospermic oocytes forming 2 normal pronuclei. FSH abolished these effects of EGF and significantly increased the percentage of polyspermic oocytes forming more than 2 pronuclei when added alone or with EGF. For protein analysis, OCC were cultured in media containing the above hormones for 6, 24, and 44 hr and exposed to 0.5 mCi/ml L-[35S]methionine during the last 3 hr of cultures. The oocytes and cumulus cells were separated prior to lysis in SDS sample buffer, and denatured polypeptides were separated by 1-dimensional SDS-PAGE. In the oocyte, addition of EGF and FSH alone stimulated the synthesis of 34, 45, and 97 kDa proteins after 6 hr of culture; however, the addition of EGF and FSH together was without any effect. After 24 hr, EGF alone inhibited the synthesis of these peptides, whereas FSH alone and with EGF maintained the stimulation of synthesis of 34 and 45 kDa proteins. Two additional peptides corresponding to 66 and 200 kDa appeared at this time as a result of exposure to FSH alone or with EGF. After 44 hr of culture, these 2 new peptides were observed in all groups and the stimulatory effect of FSH and FSH + EGF was still evident. An additional peptide of 26 kDa appeared at this time as a result of FSH and EGF + FSH treatments. In the cumulus cells, EGF and FSH each alone induced the synthesis of a new peptide of 26 kDa after 6 hr of culture. FSH when added alone or with EGF induced the synthesis of an additional peptide of 29 kDa, the synthesis of which remained unchanged at 24 and 44 hr. After 24 hr, FSH alone and in combination with EGF induced the synthesis of an additional 38 kDa peptide and its synthesis was still maintained at 44 hr. EGF alone had no effect on protein synthesis in cumulus cells at 24 and 44 hr. These studies indicate that EGF may have a physiological role in the regulation of cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev. 46:401–407, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Luteinizing hormone (LH) induces maturational processes in oocyte-cumulus cell complexes (OCC) of preovulatory follicles that include both resumption of meiosis in the oocyte and expansion (mucification) of the cumulus oophorus. Both processes require activation of mitogen-activated protein kinase (MAPK) in granulosa cells. Here, it is reported that inhibition of MAPK activation prevented gonadotropin-stimulated resumption of meiosis as well as the rise in expression of two genes whose products are necessary for normal cumulus expansion, Has2 and Ptgs2. However, inhibition of MAPK did not block gonadotropin-induced elevation of granulosa cell cAMP, indicating that the activation of MAPK required for inducing GVB and cumulus expansion is downstream of cAMP. Moreover, activation of MAPK in cumulus cells requires one or more paracrine factors from the oocyte to induce GVB and cumulus expansion; MAPK activation alone is not sufficient to initiate these maturational processes. This study demonstrates a remarkable interaction between the oocyte and cumulus cells that is essential for gonadotropin-induced maturational processes in OCC. By enabling gonadotropin-dependent MAPK activation in granulosa cells, oocytes promote the generation of a return signal from these cells that induces the resumption of meiosis. It also appears that an oocyte-dependent pathway downstream from oocyte-enabled activation of MAPK, and distinct from that promoting the resumption of meiosis, governs cumulus expansion.  相似文献   

12.
Established gap junctional communication (GJC) in the ovarian follicle is essential for maintaining the oocytes in meiotic arrest. Alternatively, LH-induced reinitiation of meiosis is subsequent to breakdown of GJC. It was recently reported that nitric oxide (NO) inhibits maturation in rat follicle-enclosed oocytes and elevates GJC in cultured mesangial cells. Taking these observations into account, we hypothesized that NO prevents reinitiation of meiosis by antagonizing the effect of LH on GJC in the ovarian follicle. Indeed, we found that NO interferes with LH-induced disruption of GJC as well as with the decrease of the expression of the gap junction protein GJA1 (previously known as CONNEXIN43). We also demonstrated that NO prevents activation of LH-induced mitogen-activated protein kinases (MAPKs) 1 and 2 and inhibits cumulus expansion. Along this line, incubation of ovarian follicles with an inhibitor of soluble guanylate cyclase, which is a downstream NO effector, induced on its own oocyte maturation as well as cumulus expansion. Unlike previous studies, we show here that elevation of NO resulted in inhibition of ovulation. We conclude that the mechanism by which NO inhibits LH-induced oocyte maturation possibly involves a negative effect on MAPK activation and, in turn, interference with interruption of GJC. This action of NO in the ovarian follicle is apparently mediated by cGMP. In addition, the negative effect of NO on ovulation may be subsequent to its inhibitory effect on cumulus expansion. Together, this study suggests that the preovulatory decrease in NO concentrations is a prerequisite for the ovarian response to LH.  相似文献   

13.
We examined whether plasminogen activators (PAs) are produced by bovine cumulus-oocyte complexes (COCs) during maturation in vitro. The effects of epidermal growth factor (EGF) on production of PAs in oocytes and cumulus cells were also examined. When COCs were cultured for 24 h with 30 ng/ml EGF, three plasminogen-dependent lytic zones (58.5 +/- 3.5 kDa, 79.0 +/- 3.0 kDa, and 113.5 +/- 6.5 kDa) were observed. Addition of amiloride, a competitive inhibitor of urokinase-type PA (uPA), to the zymogram eliminated the activity of the 58.5 +/- 3.5-kDa zone, suggesting that this band is a uPA. However, since the activity of the remaining two bands was not eliminated, it was suggested that the 79.0 +/- 3.0-kDa band is a tissue-type PA (tPA) and the 113.5 +/- 6.5-kDa band is possibly a tPA-PA inhibitor (tPA-PAI) complex. In COCs before culture, however, no activity of PAs was detected. At 6 h of culture, the same level of uPA activity was detected in COCs cultured both in the absence and in the presence of EGF. The uPA activity was increased at 12 h of culture but without further increase at 24 h of culture, with higher activity in the presence than in the absence of EGF. The activity of tPA and tPA-PAI was first detected at 24 h of culture in the absence of EGF. In the presence of EGF, however, some activity of tPA-PAI was detected at 12 h of culture. At 24 h of culture, the activity of all PAs was detected in cumulus cells, but only uPA activity was detected in oocytes, with higher activity in the presence than in the absence of EGF. The uPA activity in oocytes was not detected when they were cultured without cumulus cells in either the presence or absence of EGF, although cumulus expansion was stimulated by EGF, exhibiting a time-course similar to that observed in PA production. These results suggest that uPA, tPA, and tPA-PAI are all produced by bovine COCs, but only uPA by oocytes, during maturation in vitro. However, cumulus cells play an essential role or roles in the production of uPA by oocytes, and EGF enhances the roles of cumulus cells.  相似文献   

14.
Gonadotropins, steroids and growth factors stimulate or inhibit cumulus expansion, nuclear maturation, or both, of most mammalian oocytes in vitro. The objective was to evaluate the effects of epidermal growth factor (EGF) and various hormone combinations on in vitro granulosa/cumulus (G-C) expansion and nuclear maturation of domestic dog oocytes derived from advanced preantral and early antral follicles. Follicles were collected after enzymatic digestion of ovarian tissue and cultured for 66 h in F-12/DME with 20% fetal bovine serum, 2mM glutamine and 1% antibiotic-antimycotic (Control). Treatments comprised the following groups; each was cultured both with and without EGF (5 ng/mL): Control, FSH (0.5 microg/mL), LH (5 microg/mL), estradiol-17beta (E2, 1 microg/mL), FSH+LH, and FSH+LH+E2. Granulosa/cumulus expansion was scored on a scale of 0 (no expansion) to +3 (maximum expansion). The interaction between EGF and hormone treatment affected (P=0.011) maximum G-C expansion. With the exception of the E2 group, EGF increased (P<0.05) the proportion of oocytes exhibiting +3 expansion. The synergism of E2 with FSH+LH enhanced maximum G-C expansion; compared to all other treatments, the greatest expansion was observed in the FSH+LH+E2+EGF group (83.5+/-3.5%). When cultured in EGF alone, oocytes failed to reach metaphase I-II (MI-MII) stages. The interaction between EGF and hormone treatment tended (P=0.089) to increase the proportion of oocytes resuming or completing nuclear maturation (GVBD-MII). In addition, supplementing culture media with hormones increased (P=0.010) the GVBD-MII rate. Therefore, EGF in combination with FSH and LH enhanced G-C expansion of cultured canine oocytes, with no significant effect on the proportion of oocytes derived from advanced preantral and early antral follicles that reached MI-MII.  相似文献   

15.
Maturation of bovine oocyte-cumulus complexes (OCC) in media derived following granulosa cell culturing with prolactin (PRL, 50 ng/ml) and somatotropin (ST, 10 ng/ml) was studied. A medium conditioned by granulosa cells in the presence of PRL or ST exerted a stimulating effect on the proliferative activity of cumulus cells. ST introduction into the granulosa cell culture also caused a decrease in the rate of cumulus cells with degenerated chromatin at a subsequent OCC culturing. At the same time, the expansion of cumulus did not depend on hormone availability in the culture medium for granulosa cells. When OCC matured in conditioned media, a short-term inhibition of oocyte meiosis reinitiation (after 6 h of culturing) was revealed in both the experimental groups, as compared to the control. Furthermore, the addition of ST and PRL to granulosa cell culture resulted in a subsequent decline in the rate of oocytes with signs of chromosome degeneration, observed as early as by 6 h of incubation and to be retained throughout the whole period of OCC culturing. In this case the earlier resumption of meiosis was associated with a higher rate of degeneration of the nuclear material in oocytes. The results of the present study suggest that granulosa cells may mediate, at least in part, PRL and ST impacts on in vitro maturation of bovine OCC, with no contact between OCC and granulosa cells being required for hormonal signaling.  相似文献   

16.
17.
To enhance preservation of the extracellular materials, we have fixed hamster and mouse oocyte cumulus complexes (OCC) for transmission electron microscopy in the presence of ruthenium red. Ruthenium red had four effects on the extracellular components of the freshly ovulated hamster OCC. It interacted with the surface of cumulus and corona radiata cells; it stabilized the extracellular matrix (ECM) that was comprised of granules and filaments; it produced moderate electron density and good structural definition in the zona pellucida, and it revealed occasional smalls granular depsits on the oolemma. The ECM observed between cells of the cumulus and corona radiata layers extended into the outer one third of the zona pellucida. The granule and filament matrix was removed from the cumulus layer, corona radiata, and pores of the zona pellucida by brief treatment with hyaluronidase. The extracellular components of oviducal OCC from hamsters and mice appeared similar to OCC removed from follicles of the hamster shortly before ovulation. However, oviducal OCC did show increased aggregation of granules in the ECM. In most cases where females had been mated and oocytes were fertilized, the extracellular components appeared similar to those seen in fresh OCC. Exceptions were noted in some oocytes that lacked cumulus and corona radiata cells. In these instances, the zona pellucida generally lacked the granule/filament matrix. After fertilization numerous small electrondense granules were noted in the perivitelline space. These were presumed to originate in the cortical granules and formed a new investing layer around the zygote. Our data suggest that the OCC becomes more difficult for a sperm to penetrate as it approaches the oocyte. The significance of these results is discussed with respect to sperm traffic in the OCC and the cortical reaction.  相似文献   

18.
Gossypol, a polyphenolic aldehyde, inhibits steroidogenesis and the reproductive system in both sexes. The present study was undertaken to investigate whether gossypol may affect progesterone biosynthesis in cultured porcine granulosa cells isolated from small (1-2 mm) follicles (SGC). SGC were cultured with gossypol, NO donor S-nitroso-N-acetylpenicillamine (S-NAP) or the specific NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME), in the presence or absence of follicular fluid isolated from large (5-8 mm) follicles (LFF) or conditioned media (CM) of granulosa cells isolated from large follicles (LGC). Gossypol enhanced the nitrite content in culture media of SGC and inhibited basal progesterone secretion by SGC. S-NAP (10(-3) M) inhibited progesterone secretion and enhanced the formation of cGMP by SGC. L-NAME had no effect on progesterone accumulation by SGC. The stimulatory effect of LFF or CM media on progesterone production by SGC in culture was also inhibited by S-NAP (10(-3)) and gossypol (10(-4) M). Moreover, gossypol inhibited forskolin-stimulated progesterone secretion, as well as substrate-enhanced conversion of 22-OH-cholesterol and pregnenolone to progesterone. These results suggest that the inhibitory effect of gossypol on progesterone secretion in culture of SGC may be mediated via NO generation.  相似文献   

19.
Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.  相似文献   

20.
Previous studies have shown that the heavy chains (HCs) of serum-derived inter-alpha-trypsin inhibitor (IalphaI) molecules become covalently linked to hyaluronan (HA) during in vivo mouse cumulus expansion and significantly contribute to cumulus matrix organization. Experiments with mice suggest that the incorporation of such proteins in cumulus matrix appears to be rather complex, involving LH/hCG-induced changes in blood-follicle barrier and functional cooperation between cumulus cells, granulosa cells, and oocyte within the follicle. We demonstrate here that HC-HA covalent complexes are formed during in vivo porcine cumulus expansion as well. Western blot analysis with IalphaI antibody revealed that follicular fluids from medium-sized follicles and those from large follicles unstimulated with hCG contain high levels of all forms of IalphaI family members present in pig serum. The same amount of HCs were covalently transferred from IalphaI molecules to HA when pig oocyte-cumulus complexes (OCCs) were stimulated in vitro with FSH in the presence of pig serum or follicular fluid from unstimulated or hCG-stimulated follicles. In addition, HC-HA coupling activity was stimulated in cumulus cells by FSH treatment also in the absence of oocyte. Collectively, these results indicate that IalphaI molecules can freely cross the blood follicle barrier and that follicular fluid collected at any stage of folliculogenesis can be successfully used instead of serum for improving OCC maturation. Finally, pig cumulus cells show an autonomous ability to promote the incorporation of IalphaI HCs in the cumulus matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号