首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of cytoplasmic acidosis on the ionic conducting states of ATP-sensitive potassium channels in heart ventricular cells of guinea pigs and rabbits by using a patch-clamp technique with inside-out patch configuration. Under normal conditions (pH 7.4), the channel alternated between a closed state and a main open state in the absence of nucleotides on the cytoplasmic side. As internal pH was reduced below 6.5, the single channel current manifested distinct subconductance levels. The probability of the appearance of these subconductance levels was pH dependent with a greater probability of subconductance states at lower pH. A variance-mean amplitude analysis technique revealed two subconductance levels approximately equally spaced between the main open level and the closed level (63 and 33%). A current-voltage plot of the two subconductance levels and the main level showed that they had similar reversal potentials and rectification properties. An intrinsic flickering gating property characteristic of these ATP-sensitive channels was found unchanged in the 63% subconductance state, suggesting that this subconductance state and the main conductance state share similar ion pore properties (including ion selection and block) and similar gating mechanisms. The appearance of the subconductance states decreased as ionic strength was increased, and the subconductance states were also slightly voltage dependent, suggesting an electrostatic interaction between the protons and the negative surface charge in the vicinity of the binding sites, which may be close to the inner entrance of the ion pore. Proteolytic modification of the channel on the cytoplasmic side with trypsin did not abolish the subconductance levels. External acidosis did not induce subconductance levels. These results suggest that protons bound to the negatively charged group at the inner entrance of the channel ion pore may induce conformational changes, leading to partially reduced conductance states.  相似文献   

2.
This work proposes a theory of charge transport through channels in biological membranes, based on ion flow interaction with charged groups of protein macromolecules that form the channel. Displacements of the groups are due to conformational changes of the protein molecule, the relaxation times of which are much larger than the average time of ion ocurrence in the channel. Ion flow is assumed to depend on the conformational changes and vice-versa. The resulting self-organizing ion-conformational system is described by a set of nonlinear differential equations for conformational variables and average occupancy of the channel by ions. The system exhibits multistable behaviour in a certain range of control parameters (potential difference, input ion flow). The stationary states of the system may be identified with the states of discrete conductivity of the ionic channels.  相似文献   

3.
Neutralization of the aspartate near the selectivity filter in the GYGD pore sequence (D292N) of the voltage- and Ca(2+)-activated K+ channel (MaxiK, BKCa) does not prevent conduction like the corresponding mutation in Shaker channel, but profoundly affects major biophysical properties of the channel (Haug, T., D. Sigg, S. Ciani, L. Toro, E. Stefani, and R. Olcese. 2004. J. Gen. Physiol. 124:173-184). Upon depolarizations, the D292N mutant elicited mostly gating current, followed by small or no ionic current, at voltages where the wild-type hSlo channel displayed robust ionic current. In fact, while the voltage dependence of the gating current was not significantly affected by the mutation, the overall activation curve was shifted by approximately 20 mV toward more depolarized potentials. Several lines of evidence suggest that the mutation prevents population of certain open states that in the wild type lead to high open probability. The activation curves of WT and D292N can both be fitted to the sum of two Boltzmann distributions with identical slope factors and half activation potentials, just by changing their relative amplitudes. The steeper and more negative component of the activation curve was drastically reduced by the D292N mutation (from 0.65 to 0.30), suggesting that the population of open states that occurs early in the activation pathway is reduced. Furthermore, the slow component of the gating current, which has been suggested to reflect transitions from closed to open states, was greatly reduced in D292N channels. The D292N mutation also affected the limiting open probability: at 0 mV, the limiting open probability dropped from approximately 0.5 for the wild-type channel to 0.06 in D292N (in 1 mM [Ca2+]i). In addition to these effects on gating charge and open probability, as already described in Part I, the D292N mutation introduces a approximately 40% reduction of outward single channel conductance, as well as a strong outward rectification.  相似文献   

4.
The gating of ion channels has widely been modeled by assuming the transition between open and closed states is a memoryless process. Nevertheless, the statistical analysis of an ionic current signal recorded from voltage dependence K(+) single channel is presented. Calculating the sample auto-correlation function of the ionic current based on the digitized signals, rather than the sequence of open and closed states duration time. The results provide evidence for the existence of memory. For different voltages, the ion channel current fluctuation has different correlation attributions. The correlations in data generated by simulation of two Markov models, on one hand, auto-correlation function of the ionic current shows a weaker memory, after a delayed period of time, the attribute of memory does not exist; on the other hand, the correlation depends on the number of states in the Markov model. For V(p)=-60 mV pipette potential, spectral analysis of ion channel current was conducted, the result indicates that the spectrum is not a flat spectrum, the data set from ionic current fluctuations shows considerable variability with a broad 1/f -like spectrum, alpha=1.261+/-0.24. Thus the ion current fluctuations give information about the kinetics of the channel protein, the results suggest the correlation character of ion channel protein nonlinear kinetics regardless of whether the channel is in open or closed state.  相似文献   

5.
A voltage-dependent, K+-selective ionic channel from sarcoplasmic reticulum of rabbit skeletal muscle has been studied in a planar phospholipid bilayer membrane. The purpose [corrected] of this work is to study the mechanism by which the channel undergoes transitions between its conducting and nonconducting states. Thermodynamic studies show that the "open" and "closed" states of the channel exist in a voltage-dependent equilibrium, and that the channel displays only a single open state; the channel conductance is 120 pmho in 0.1 M K+. The channel's gating process follows single exponential kinetics at all voltages tested, and the individual opening and closing rate constants are exponentially dependent on voltage. The individual rate constants may also be determined from a stochastic analysis of channel fluctuations among multiple conductance levels. Neither the thermodynamic nor the kinetic parameters of gating depend on the absolute concentration of channels in the bilayer. The results are taken as evidence that the channel gates by an unusually simple two-state conformational mechanism in which the equivalent of 1.1 net charges are moved across the membrane during the formation of the open channel.  相似文献   

6.
In this study we examine the effects of ionic conditions on the gating charge movement in the fast inactivation-removed wild-type Shaker channel and its W434F mutant. Our results show that various ionic conditions influence the rate at which gating charge returns during repolarization following a depolarizing pulse. These effects are realized through different mechanisms, which include the regulation of channel closing by occupying the cavity, the modulation of transitions into inactivated states, and effects on transitions between closed states via a direct interaction with the channel's gating charges. In generating these effects the cations act from the different binding sites within the pore. Ionic conditions, in which conducting wild-type channels close at different rates, do not significantly affect the rate of charge recovery upon repolarization. In these conditions, channel closing is fast enough not to be rate-limiting in the charge recovery process. In the permanently P-inactivated mutant channel, however, channel closing becomes the rate-limiting step, presumably due to weakened ion-ion interactions inside the pore and a slower intrinsic rate of gate closure. Thus, variations in closing rate induced by different ions are reflected as variations in the rate of charge recovery. In 115 mM internal Tris(+) and external K(+), Cs(+), or Rb(+), low inward permeation of these ions can be observed through the mutant channel. In these instances, channel closing becomes slower than in Tris(+)(O)//Tris(+)(I) solutions showing resemblance to the wild-type channel, where higher inward ionic fluxes also retard channel closing. Our data indicate that cations regulate the transition into the inactivated states from the external lock-in site and possibly the deep site. The direct action of barium on charge movement is probably exerted from the deep site, but this effect is not very significant for monovalent cations.  相似文献   

7.
In this paper I describe the occurrence and properties of a subconductance state of the cation-selective channel of the sarcoplasmic reticulum. The substate conductance is 60% of the major state conductance in every salt solution examined. When single channel conductance is plotted vs. ion concentration (for potassium or thallium salt solutions) the Michaelis-Menten constant is nearly the same for both conductance states, while the maximum conductance is reduced for the subconductance state. Both conductance states show anomalous conductance behavior in mixed potassium-thallium solutions that may be modeled in the same way. These results indicate that the ionic selectivity of the channel is the same for both open states.  相似文献   

8.
The effects of systematic variations in the preparative procedures on the membrane viscoelastic properties of resealed human red blood cell ghosts have been investigated. Ghosts, prepared by hypotonic lysis at 0 degrees C and resealing at 37 degrees C, were subjected to: measurement of the time constant for extensional recovery (tc); measurement of the membrane shear elastic modulus (mu) via three separate techniques; determination of the membrane viscosity (eta m) via a cone-plate Rheoscope. Membrane viscosity was also determined as eta m = mu X tc. Compared to intact cells, ghosts had shorter tc, regardless of their residual hemoglobin concentration (up to 21.6 g/dl). However, prolonged exposure to hypotonic media did increase their recovery time toward the intact cell value. The shear elastic modulus, as judged by micropipette aspiration of membrane tongues (mu p), was similar for all ghosts and intact cells. This result, taken with the tc data, indicates that ghosts have reduced membrane viscosity. Rheoscopic analysis also showed that eta m was reduced for ghosts, with the degree of reduction (approx. 50%) agreeing well with that estimated by the product mu p X tc. However, flow channel and pipette elongation estimates indicated that the ghost membrane elastic modulus was somewhat elevated compared to intact cells. We conclude that: ghosts have reduced membrane viscosity; ghosts have membrane rigidities close to intact cells, except possibly when the membrane is subjected to very large strains; the reduction in eta m is not directly related to the loss of hemoglobin; prolonged exposure of ghosts to low-ionic strength media increases the membrane viscosity toward its initial cellular level. These data indicate that the mechanical characteristics of ghost membranes can be varied by changing the methods of preparation and thus have potential application to further studies of the structural determinants of red cell membrane viscoelasticity.  相似文献   

9.
10.
We consider the impact of a possible intermediate event on a terminal event in an illness-death model with states 'initial', 'intermediate' and 'terminal'. One aim is to unambiguously describe the occurrence of the intermediate event in terms of the observable data, the problem being that the intermediate event may not occur. We propose to consider a random time interval, whose length is the time spent in the intermediate state. We derive an estimator of the joint distribution of the left and right limit of the random time interval from the Aalen-Johansen estimator of the matrix of transition probabilities and study its asymptotic properties. We apply our approach to hospital infection data. Estimating the distribution of the random time interval will usually be only a first step of an analysis. We illustrate this by analysing change in length of hospital stay following an infection and derive the large sample properties of the respective estimator.  相似文献   

11.
Changes in the ionic permeability of bilayer lipid membranes from dipalmitoyl phosphatidylcholine at temperatures of phase transition in LiCl (1 M) solution after the addition of polyethyleneglycols of different molecular masses have been studied. The transition of ionic membrane channels from the conducting state to a blocking nonconducting state using polymers makes it possible to calibrate lipid pores. It was shown that low-molecular-weight glycerol, polyethyleneglycols with molecular masses of 300 and 600 decrease the amplitude of fluctuations of the current through the membrane, the decrease being proportional to the size of the polymer molecule being incorporated. The addition of polyethyleneglycols with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. This result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as polyethyleneglycols with molecular masses of 6000 and 20000, which are practically not incorporated into the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of polyethyleneglycol. It is assumed that the complete blockade of the conductivity of lipid ionic channels by polyethyleneglycols with molecular masses of 1450, 2000, and 3350 is due to the dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic pore.  相似文献   

12.
A theory is presented which relates the nonstationary autocovariance (covariance) function to the kinetics of independently-gated ionic channels. The experimental covariance was calculated from ensembles of 256--504 current records elicited from single, voltage-clamped, frog myelinated nerve fibers. Analysis of the covariance shows that the decay of channels from conducting to nonconducting states proceeds more slowly late in a depolarization to near 0 mV, as compared with early in the same depolarization. This behavior is inconsistent with there being only one kinetic state corresponding to the open channel. The behavior can be explained by the existence of multiple kinetic states corresponding to the open channel, or, alternatively, by the existence of multiple, kinetically distinct populations of channels.  相似文献   

13.
Protein phosphorylation is an important mechanism in the modulation of voltage-dependent ionic channels. In squid giant axons, the potassium delayed rectifier channel is modulated by an ATP-mediated phosphorylation mechanism, producing important changes in amplitude and kinetics of the outward current. The characteristics and biophysical basis for the phosphorylation effects have been extensively studied in this preparation using macroscopic, single-channel and gating current experiments. Phosphorylation produces a shift in the voltage dependence of all voltage-dependent parameters including open probability, slow inactivation, first latency, and gating charge transferred. The locus of the effect seems to be located in a fast 20 pS channel, with characteristics of delayed rectifier, but at least another channel is phosphorylated under our experimental conditions. These results are interpreted quantitatively with a mechanistic model that explains all the data. In this model the shift in voltage dependence is produced by electrostatic interactions between the transferred phosphate and the voltage sensor of the channel.  相似文献   

14.
Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one.  相似文献   

15.
The magnitudes and distributions of subconductance states were studied in chloride channels formed by the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and in CFTRs bearing amino acid substitutions in transmembrane segment 6. Within an open burst, it was possible to distinguish three distinct conductance states referred to as the full conductance, subconductance 1, and subconductance 2 states. Amino acid substitutions in transmembrane segment 6 altered the duration and probability of occurrence of these subconductance states but did not greatly alter their relative amplitudes. Results from real time measurements indicated that covalent modification of single R334C-CFTR channels by [2-(trimethylammonium)ethyl]methanethiosulfonate resulted in the simultaneous modification of all three conductance levels in what appeared to be a single step, without changing the proportion of time spent in each state. This behavior suggests that at least a portion of the conduction path is common to all three conducting states. The time course for the modification of R334C-CFTR, measured in outside-out macropatches using a rapid perfusion system, was also consistent with a single modification step as if each pore contained only a single copy of the cysteine at position 334. These results are consistent with a model for the CFTR conduction pathway in which a single anion-conducting pore is formed by a single CFTR polypeptide.  相似文献   

16.
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that switches upon activation from a closed state to a full conducting state. We found that the mutation delta S268K, located at 12' position of the second transmembrane domain of the delta subunit of the human nAChR generates a long-lived intermediate conducting state, from which openings to a wild-type like conductance level occur on a submillisecond time scale. Aiming to understand the interplay between structural changes near the 12' position and channel gating, we investigated the influence of various parameters: different ligands (acetylcholine, choline and epibatidine), ligand concentrations, transmembrane voltages and both fetal and adult nAChRs. Since sojourns in the high conductance state are not fully resolved in time, spectral noise analysis was used as a complement to dwell time analysis to determine the gating rate constants. Open channel current fluctuations are described by a two-state Markov model. The characteristic time of the process is markedly influenced by the ligand and the receptor type, whereas the frequency of openings to the high conductance state increases with membrane hyperpolarization. Conductance changes are discussed with regard to reversible transfer reaction of single protons at the lysine 12' side chain.  相似文献   

17.
The large conductance K+ channel in the tonoplast of Chara corallina has subconductance states (substates). We describe a method that detects substates by monitoring the time derivative of channel current. Substates near to the full conductance tend to have long durations and high probabilities, while those of smaller amplitude occur with less probability and short duration. The substate pattern is similar in cell-attached, inside-out and outside-out patches over a range of temperatures. The pattern changes at high Ca2+ concentration (10 mol m-3) on the cytoplasmic face of inside-out patches. One substate at approximately 50% of the full conductance is characterized by a high frequency of transitions from the full conductance level. This midstate conductance is not a constant proportion of the full conductance but changes as a function of membrane potential difference (p.d.) showing strong inward rectification. We suggest that the channel is a single pore that can change conformation and/or charge profile to give different conductances. The mean durations of the full conductance level and the midstate decrease as the membrane p.d. becomes more negative. Programs for analysis of channel kinetics based on an half-amplitude detection criterion are shown to be unsuitable for analysis of the K+ channel.  相似文献   

18.
An acidic lumenal pH is vital for the proper posttranslational modifications and sorting of proteins and lipids from the Golgi complex. We characterized ion channels present in Golgi fractions that have been cleared of transiting proteins. A large conductance anion channel was observed in approximately 30% of successful channel incorporations into the planar lipid bilayer. The channel, GOLAC-2, has six levels (one closed and five open). The open states are each approximately 20% increments of the maximal, 325 pS conductance. The channel was approximately 6 times more selective for Cl(-) over K(+). Binomial analysis of percent occupancy for each conducting level supports the hypothesis of five independent conducting pathways. The conducting levels can coordinately gate because full openings and closings were often observed. Addition of 3 to 5 mM reduced glutathione to the cis chamber caused dose-dependent increases in single channel conductance, indicating that the channel may be regulated by the oxidation-reduction state of the cell. We propose that GOLAC-2 is a co-channel complex consisting of five identical pores that have a coordinated gating mechanism. GOALC-2 may function as a source of counter anions for the H(+)-ATPase and may be involved in regulating charge balance and membrane potential of the Golgi complex.  相似文献   

19.
Properties of individual ionic channels formed by polyene antibiotic Amphotericin B were studied on brain phospholipid membranes containing cholesterol. The ionic channels have a closed state and an open one (with conductance of about 6.5 pS in 2 M KCl). The conductance value of an open channel is independent of cholesterol concentration in the membrane and of pH in the range from 3.5 to 8.0. The voltage-current characteristics of a single channel are superlinear. Zero current potential value in the case of different KCl concentrations in the two solutions indicates preferential but not ideal anionic selectivity of a single channel. Channel conductivity grows as the electrolyte concentration is increased and tends to a limiting value at high concentrations. A simple model having only one site for an ion was shown to represent satisfactorily an open channel behaviour under different conditions. An individual ionic channel performs a large number of transitions between the open and closed states during its life-time of several minutes. Rate constants of these transitions depend on the kind and concentration of salt in aqueous solutions. The switching system functioning is not influenced by an ion situated inside the pore.  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that switches upon activation from a closed state to a full conducting state. We found that the mutation δ S268K, located at 12′ position of the second transmembrane domain of the δ subunit of the human nAChR generates a long-lived intermediate conducting state, from which openings to a wild-type like conductance level occur on a submillisecond time scale. Aiming to understand the interplay between structural changes near the 12′ position and channel gating, we investigated the influence of various parameters: different ligands (acetylcholine, choline and epibatidine), ligand concentrations, transmembrane voltages and both fetal and adult nAChRs. Since sojourns in the high conductance state are not fully resolved in time, spectral noise analysis was used as a complement to dwell time analysis to determine the gating rate constants. Open channel current fluctuations are described by a two-state Markov model. The characteristic time of the process is markedly influenced by the ligand and the receptor type, whereas the frequency of openings to the high conductance state increases with membrane hyperpolarization. Conductance changes are discussed with regard to reversible transfer reaction of single protons at the lysine 12′ side chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号