首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W C Wimley  T E Thompson 《Biochemistry》1990,29(5):1296-1303
The rate and extent of spontaneous exchange of dimyristoylphosphatidylcholine (DMPC) from large unilamellar vesicles (LUV) composed of either DMPC or mixtures of DMPC/distearoylphosphatidylcholine (DSPC) have been examined under equilibrium conditions. The phase state of the vesicles ranged from all-liquid-crystalline through mixed gel/liquid-crystalline to all-gel. The exchange rate of DMPC between liquid-crystalline DMPC LUV, measured between 25 and 55 degrees C, was found to have an Arrhenius activation energy of 24.9 +/- 1.4 kcal/mol. This activation energy and the exchange rates are very similar to those obtained for the exchange of DMPC between DMPC small unilamellar vesicles (SUV). The extent of exchange of DMPC in LUV was found to be approximately 90%. This is in direct contrast to the situation in DMPC SUV where only the lipid in the outer monolayer is available for exchange. Thus, transbilayer movement (flip-flop) is substantially faster in liquid-crystalline DMPC LUV than in SUV. Desorption from gel-phase LUV has a much lower rate than gel-phase SUV with an activation energy of 31.7 +/- 3.7 kcal/mol compared to 11.5 +/- 2 kcal/mol reported for SUV. A defect-mediated exchange in gel-phase SUV, which is not the major pathway for exchange in LUV, is proposed on the basis of the thermodynamic parameters of the activation process. Surprisingly, the rates of DMPC exchange between DMPC/DSPC two-component LUV, measured over a wide range of compositions and temperatures, were found to exhibit very little dependence on the composition or phase configuration of the vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

3.
The effects of solid-fluid phase separations on the kinetics of association of a single-chain fluorescent amphiphile were investigated in two different systems: pure DMPC (dimyristoylphosphatidylcholine) and a 1:1 mixture of DMPC and DSPC (distearoylphosphatidylcholine). In pure DMPC vesicles, solid (s) and fluid (l(d)) phases coexist at the phase transition temperature, T(m), whereas a 1:1 mixture of DMPC and DSPC shows a stable s-l(d) phase separation over a large temperature interval. We found that in single-component bilayers, within the main phase transition, the experimental kinetics of association are clearly not single-exponential, the deviation from that function becoming maximal at the T(m). This observation can be accounted for by a rate of desorption that is slower than desorption from either fluid or solid phases, leaving the rates of insertion unchanged, but a treatment in terms of stable fluid and solid domains may not be adequate for the analysis of the association of an amphiphile with pure DMPC vesicles at the T(m). In DMPC/DSPC mixtures with solid-fluid phase coexistence, association occurs overall faster than expected based on phase composition. The observed kinetics can be described by an increase in the rate of insertion, leaving the desorption rates unchanged. The fast kinetics of insertion of the amphiphile into two-phase bilayers in two-component vesicles is attributed to a more rapid insertion into defect-rich regions, which are most likely phase boundaries between solid and fluid domains. A two-component mixture of lipids that shows a stable phase separation between l(d)-s phases over a large temperature interval thus behaves very differently from a single-component bilayer at the T(m), with respect to insertion of amphiphiles.  相似文献   

4.
Kóta Z  Páli T  Marsh D 《Biophysical journal》2004,86(3):1521-1531
Gramicidin A was incorporated at a peptide/lipid ratio of 1:10 mol/mol in aligned bilayers of dimyristoyl phosphatidylcholine (DMPC), phosphatidylserine (DMPS), phosphatidylglycerol (DMPG), and phosphatidylethanolamine (DMPE), from trifluoroethanol. Orientations of the peptide and lipid chains were determined by polarized attenuated total reflection infrared spectroscopy. Lipid-peptide interactions with gramicidin A in DMPC bilayers were studied with different spin-labeled lipid species by using electron spin resonance spectroscopy. In DMPC membranes, the orientation of the lipid chains is comparable to that in the absence of peptide, in both gel and fluid phases. In gel-phase DMPC, the effective tilt of the peptide exceeds that of the lipid chains, but in the fluid phase both are similar. For gramicidin A in DMPS, DMPG, and DMPE, the degree of orientation of the peptide and lipid chains is less than in DMPC. In the fluid phase of DMPS, DMPG, and DMPE, gramicidin A is also less well oriented than are the lipid chains. In DMPE especially, gramicidin A is largely disordered. In DMPC membranes, three to four lipids per monomer experience direct motional restriction on interaction with gramicidin A. This is approximately half the number of lipids expected to contact the intramembranous perimeter of the gramicidin A monomer. A selectivity for certain negatively charged lipids is found in the interaction with gramicidin A in DMPC. These results are discussed in terms of the integration of gramicidin A channels in lipid bilayers, and of the interactions of lipids with integral membrane proteins.  相似文献   

5.
W C Wimley  T E Thompson 《Biochemistry》1991,30(17):4200-4204
It has previously been demonstrated that lipid exchange between phosphatidylcholine vesicles, at higher concentrations, is characterized by a second-order concentration-dependent exchange process in addition to the first-order process operative at lower concentrations (Jones, J. D., & Thompson, T. E. (1989) Biochemistry 28, 129-134). Furthermore, it was demonstrated that the second-order process occurs as a result of an enhancement of the first-order desorption process, possibly resulting from attractive interactions between a potentially desorbing lipid molecule and a transiently apposed bilayer (Jones, J. D., & Thompson, T. E. (1990) Biochemistry 29, 1593-1600). In this work we have studied the exchange of [3H]dimyristoylphosphatidylcholine (DMPC) between large vesicles of the compositions 100% DMPC, 70/30 (mol/mol) DMPC/dimyristoylphosphatidylethanolamine (DMPE), and 68.25/30/1.75 (mol/mol/mol) DMPC/DMPE/dimyristoylphosphatidylglycerol (DMPG). The second-order exchange process is enhanced by 100-fold or more in vesicles containing 30 mol % DMPE relative to 100% DMPC and is reduced or eliminated by the addition of 1.75% of the anionic lipid DMPG. These effects can be achieved by alterations in the equilibrium bilayer separation of 5 A or less. The results are in accord with the model of Jones and Thompson and indicate that relatively low concentrations of PE in a PC bilayer can have significant effects on bilayer surface properties and on potential interactions between bilayers.  相似文献   

6.
Priest's phenomenological model (Mol. Cryst. Liq. Cryst. 60 (1980) 167.) on one- and two-component PC bilayers is extended here. We constructed a new excess free energy term in the state function to describe the thermodynamic properties of the two-component phospholipid bilayers where the chain lengths and the polar heads of the components can be different simultaneously. By means of this generalized state function, we can calculate the phase diagrams of DPPC/DPPE, DMPC/DMPE, DMPC/DPPE, DPPC/DMPE and DSPC/DMPE mixtures. We obtained complete miscibility both in the liquid crystalline and in the gel phase if the chain lengths of the components were the same. If the chain length of the PE component was longer than that of the PC component, we obtained a peritectic system. A eutectic system was obtained in the reverse case. The results of the model were compared with the experimental data available. Applying the quasichemical approximation, we determined the molecular meaning of the phenomenological model parameters. Namely, sigma and gamma are proportional to the sublimation heat of the CH2 group in the long-chain alkanes and to the hydrogen-bonding energy between the polar heads of the ethanolamines; otherwise the model resulted in--1.94 kcal/mol per CH2 for the sublimation heat and --1.4 kcal/mol for the hydrogen-bond energy.  相似文献   

7.
Apolipoprotein A-I (apoA-I) interaction with specific cell lipid domains was suggested to trigger cholesterol and phospholipid efflux. We analyzed here apoA-I interaction with dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) bilayers at a temperature showing phase coexistence. Solid and liquid-crystalline domains were visualized by two-photon fluorescence microscopy on giant unilamellar vesicles (GUVs) labeled with 6-dodecanoyl-2-dimethyl-amino-naphthalene (Laurdan). A decrease of vesicle size was detected as long as they were incubated with lipid-free apoA-I, together with a shape deformation and a relative enrichment in DSPC. Selective lipid removal mediated by apoA-I from different domains was followed in real time by changes in the Laurdan generalized polarization. The data show a selective interaction of apoA-I with liquid-crystalline domains, from which it removes lipids, at a molar ratio similar to the domain compositions. Next, apoA-I was incubated with DMPC/DSPC small unilamellar vesicles, and products were isolated and quantified. Protein solubilized both lipids but formed complexes relatively enriched in the liquid component. We also show changes in the GUV morphology when cooling down. Our results suggest that the most efficient reaction between apoA-I and DMPC/DSPC occurs in particular bilayer conditions, probably when small fluid domains are nucleated within a continuous gel phase and interfacial packing defects are maximal.  相似文献   

8.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

9.
Summary Activity of phospholipase C fromClostridium perfringens on liposomes made fromsn-3-phosphatidylcholine, dimyristoyl (DMPC), dipalmitoyl (DPPC) or distearoyl (DSPC) was measured at various temperatures and was correlated with their gel/liquid-crystalline phase transitions (T c : 23, 41.5, 52°C for DMPC, DPPC, DSPC, respectively). In all cases, the activity of phospholipase C was high in the gel phases of the substrates and was almost zero in their liquid-crystalline phases. Fluorescence depolarization measurements of N-dansyl-sn-3-phosphatidylethanolamine (DPE) and 1,6-diphenyl-1,3,5-hexatriene (DPH) incorporated into the liposomes showed that both the head group and the alkyl chains of the lipids were immobilized in the gel phases but were highly mobile in the liquid-crystalline phase. These results indicate that the rotational mobility of lipids (both of the head groups and the alkyl chains) was not a major factor in the phospholipase C reaction. It is inferred that some electrostatic and/or hydrophobic interactions might play important roles in regulation of the phospholipase C activity.  相似文献   

10.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

11.
Partition of malathion in synthetic and native membranes   总被引:1,自引:0,他引:1  
Partition coefficients of [14C]malathion in model and native membranes are affected by temperature, cholesterol content, and lipid chain length. Partition in egg phosphatidylcholine bilayers decreases linearly with temperature, over a range (10-40 degrees C) at which the lipid is in the liquid-crystalline state. Addition of 50 mol% cholesterol severely decreases partition and practically abolishes the temperature dependence. First-order phase transitions of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC) are accompanied by a sharp increase in malathion partition. Apparently, the insecticide is easily accommodated in bilayers of short-aliphatic-chain lipids, since the partitions were 225, 135 and 48 in DMPC, DPPC and DSPC, respectively, at temperatures 10 Cdeg below the midpoint of their transitions. Partition values in native membranes decrease sequentially as follows: sarcoplasmic reticulum, mitochondria, brain microsomes, myelin and erythrocytes. This dependence parallels the relative content of cholesterol and is similar in liposomes of total extracted lipids, although the absolute partitions showed decreased values.  相似文献   

12.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into alpha-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D(2)O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1>aurein 1.2>citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1>aurein 1.2 congruent with citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

13.
By use of neutron diffraction for structural analysis, the temperature-pressure phase diagrams of several fully hydrated single-component phospholipid bilayers have been explored up to hydrostatic pressures of 2 kbars. The gel to liquid-crystalline phase transition temperature Tm increases linearly with pressure over a 10(-3)-2 kbar range in accordance with the Clausius-Clapeyron relationship giving dTm/dP values of 23.0 degrees C/kbar for 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 28.0 degrees C/kbar for 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The so-called pretransition was not observed in the isothermal pressure experiments, suggesting that no appreciable volume change occurs at this transition. These results are in good agreement with those reported using other techniques. In addition, at pressures higher than the isothermal liquid-crystalline to gel transition pressure, a new pressure-induced phase transition was observed for DPPC and DSPC in which the hydrocarbon chains from apposing monolayers become interdigitated with the chains occupying a cross-sectional area approximately equal to 5% less than in the gel phase. The temperature-pressure phase diagrams show the gel-interdigitated phase boundaries to be highly curved and the minimum pressure at which interdigitation occurs to decrease with increasing hydrocarbon chain length.  相似文献   

14.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

15.
A phenomenological model is proposed to describe the membrane phase equilibria in binary mixtures of saturated phospholipids with different acyl-chain lengths. The model is formulated in terms of thermodynamic and thermomechanic properties of the pure lipid bilayers, specifically the chain-melting transition temperature and enthalpy, the hydrophobic bilayer thickness, and the lateral area compressibility modulus. The model is studied using a regular solution theory made up of a set of interaction parameters which directly identify that part of the lipid-lipid interaction which is due to hydrophobic mismatch of saturated chains of different lengths. It is then found that there is effectively a single universal interaction parameter which, in the full composition range, describes the phase equilibria in mixtures of DMPC/DPPC, DPPC/DSPC, DMPC/DSPC, and DLPC/DSPC, in excellent agreement with experimental measurements. The model is used to predict the variation with temperature and composition of the specific heat, as well as of the average membrane thickness and area in each of the phases. Given the value of the universal interaction parameter, the model is then used to predict the phase diagrams of binary mixtures of phospholipids with different polar head groups, e.g., DPPC/DPPE, DMPC/DPPE and DMPE/DSPC. By comparison with experimental results for these mixtures, it is shown that difference in acyl-chain lengths gives the major contribution to deviation from ideal mixing. Application of the model to mixtures with non-saturated lipids is also discussed.  相似文献   

16.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

17.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into α-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D2O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1 > aurein 1.2 > citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1 > aurein 1.2 ≅ citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

18.
High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC > DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.  相似文献   

19.
Liu J  Conboy JC 《Biophysical journal》2005,89(4):2522-2532
Sum-frequency vibrational spectroscopy (SFVS) is used to measure the intrinsic rate of lipid flip-flop for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in planar-supported lipid bilayers (PSs). Asymmetric PSLBs were prepared using the Langmuir-Blodgett/Langmuir-Schaefer method by placing a perdeuterated lipid analog in one leaflet of the PSLB. SFVS was used to directly measure the asymmetric distribution of the native lipid within the membrane by measuring the decay in the CH3 v(s) intensity at 2875 cm(-1) with time and as a function of temperature. An average activation energy of 220 kJ/mol for the translocation of DMPC, DPPC, and DSPC was determined. A decrease in alkyl chain length resulted in a substantial increase in the rate of flip-flop manifested as an increase in the Arrhenius preexponential factor. The effect of lipid labeling was investigated by measuring the exchange of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-n,n-Dimethyl-n-(2',2',6',6'-tetramethyl-4'-piperidyl) (TEMPO-DPPC). The rate of TEMPO-DPPC flip-flop was an order-of-magnitude slower compared to DPPC. An activation energy of 79 kJ/mol was measured which is comparable to that previously measured by electron spin resonance. The results of this study illustrate how SFVS can be used to directly measure lipid flip-flop without the need for a fluorescent or spin-labeled lipid probe, which can significantly alter the rate of lipid translocation.  相似文献   

20.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号