首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AMP deaminase isoenzymes from trout gill were activated by sodium and potassium, sodium being the most efficient. The optimal concentration for activation was 30-50 mM. The enzyme was sensitive to ionic strength, and imidazole was an inhibitor at concentrations higher than 25 mM. A possible regulation of gill AMP deaminase by intracellular imidazole buffers is discussed. AMP deaminase activity was tested in the presence of physiological concentrations of sodium and potassium. When the concentration of one of these cations was varied around its physiological concentration, the enzyme activity was relatively stable, indicating that the intracellular AMP deaminase activity would be insensitive to changes in the concentrations of monovalent cations. The effects of the sodium salts of different inorganic and organic anions were tested. Except chloride and gluconate, all were inhibitors of gill AMP deaminase.  相似文献   

2.
The relative amount of modified AMP deaminase has been determined by taking advantage of the different effects of monovalent cations on the two enzymatic forms. When trout were subjected to different environmental perturbations (starvation, pollution of the water by a pesticide, transfer to sea water or reverse transfer to fresh water), modified AMP deaminase could be detected in the gill extracts. Depending on the nature of the stress and the period of experimentation, 8 to 100% of the enzyme had been modified by limited proteolysis. As a consequence of the much higher activity of the proteolyzed AMP deaminase form, a 2 to 12 times increase of the intracellular AMP deaminase activity could be expected. At the same time, limited proteolysis will modify the regulatory properties of the enzyme, since it can be estimated that 50 to 100% of the enzyme activity expressed in the cell will be an AMP deaminase form less sensitive to inhibition by inorganic phosphate and ionic strength, and to variations of the intracellular pH. Limited proteolysis will result in increased AMP deaminase activity under conditions of increased energy demand, where the concentration of inorganic phosphate is dramatically increased. The consequence should be stabilization of the adenylate energy charge.  相似文献   

3.
The physiological role of the inhibition of AMP deaminase (EC 3.5.4.6) by Pi was analyzed using permeabilized yeast cells. (a) Fructose 1,6-bisphosphatase (EC 3.1.3.11) was inhibited only a little by AMP, which was readily degraded by AMP deaminase under the in situ conditions. (b) The addition of Pi, which showed no direct effect on fructose 1,6-bisphosphatase, effectively enhanced the inhibition of the enzyme by AMP increased through the inhibition of AMP deaminase. (c) Pi activated phosphofructokinase (EC 2.7.1.11) and inhibited AMP deaminase activity. AMP deaminase reaction can act as a control system of fructose 1,6-bisphosphatase activity and gluconeogenesis/glycolysis reaction through the change in the AMP level. Pi may contribute to the stimulation of glycolysis through the inhibition of fructose 1,6-bisphosphatase by the increase in AMP in addition to the direct activation of phosphofructokinase.  相似文献   

4.
1. The AMP deaminase activity present in a crude extract of trout gill increased with time. 2. Soybean trypsin inhibitor and alpha2-macroglobulin inhibited the AMP deaminase activation. NEM was also inhibitory at 10-3 M. 3. The activation process is followed by a decrease of activity which is inhibited by EGTA and enhanced by Mg2+. These two compounds were without effect on the activation process itself. 4. Trypsin induces a sharp activation of AMP deaminase in a fresh gill extract but is without effect on a fully activated extract. 5. Overall, the results suggest that neutral proteinases are implicated in AMP deaminase activation.  相似文献   

5.
On storage at 4 degrees C, rabbit skeletal muscle AMP deaminase undergoes limited proteolysis with the conversion of the native 85-kDa enzyme subunit to a 75-kDa core that is resistant to further proteolysis. Further studies have shown that limited proteolysis of AMP deaminase with trypsin, removing the 95-residue N-terminal fragment, converts the native enzyme to a species that exhibits hyperbolic kinetics even at low K+ concentration. The results of this report show that a 21-residue synthetic peptide, when incubated with the purified enzyme, is cleaved with a specificity identical to that reported for ubiquitous calpains. In addition, the cleavage of a specific fluorogenic peptide substrate by rabbit m-calpain is inhibited by a synthetic peptide that corresponds to residues 10-17 of rabbit skeletal muscle AMP deaminase; this peptide contains a sequence (K-E-L-D-D-A) that is present in the fourth subdomain A of rabbit calpastatin, suggesting that the N-terminus of AMP deaminase shares with calpastatin a regulatory sequence that might exert a protective role against the fragmentation-induced activation of AMP deaminase. These observations suggest that a calpain-like proteinase present in muscle removes from AMP deaminase a domain that holds the enzyme in an inactive conformation and which also contains a regulatory region that protects against unregulated proteolysis. We conclude that proteolysis of AMP deaminase is the basis of the large ammonia accumulation that occurs in skeletal muscle subjected to strong tetanic contraction or passing into rigor mortis.  相似文献   

6.
Chromatography on phosphocellulose column revealed changes in the elution profile of 14 day-old chicken embryo and adult hen skeletal muscle AMP deaminase. In the presence of 5 mM potassium the enzyme from embryo muscle exhibited a sigmoid-shaped plot of the reaction rate versus substrate concentration. The increase of KCl concentration up to 100 mM diminished distinctly sigmoidicity of the plot. Micromolar concentrations of ADP or ATP activated, whereas GTP at the same concentrations inhibited the embryo and hen skeletal muscle AMP deaminase while 5 mM KCl was present in the incubation medium. 100 mM potassium concentration diminished the effect of ADP and ATP but not of GTP. Palmitoyl-CoA inhibited strongly the embryo skeletal muscle adenylate deaminase but had no effect on the activity of the hen enzyme. Alanine inhibited only the adult hen enzyme. The embryo and hen AMP deaminase differed also in the specificity to adenylate analogues and exhibited a different dAMP/AMP ratio. The data presented indicate that kinetic and regulatory properties of the two developmental forms of AMP deaminase are different.  相似文献   

7.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

8.
The role of NH+4 ion and AMP deaminase reaction in the activation of phosphofructokinase with respect to its response to the adenylate energy charge was investigated using permeabilized yeast cells. (a) Phosphofructokinase and AMP deaminase were activated by the decrease in the adenylate energy charge. The addition of NH+4 further stimulated the phosphofructokinase activity in the presence of intracellular level of K+, and the optimal energy charge value giving the maximal response of the enzyme was shifted from 0.3 to the value above 0.5. (b) The increase in NH+4 ion produced through the activation of AMP deaminase by spermine which shows no direct action on the phosphofructokinase activity can activate phosphofructokinase with shift of the optimal energy charge value of the enzyme to 0.5 in the presence of K+, whereas the optimal energy charge value for AMP deaminase reaction was not affected by the addition of spermine. Phosphofructokinase can be activated most effectively by the physiological decrease in the energy charge under the condition of increased NH+4 in the presence of K+. The possibility that the interaction of phosphofructokinase with AMP deaminase under hypoxic condition might be a contributing factor to the Pasteur effect is discussed.  相似文献   

9.
The role of ammonium ion and AMP deaminase (EC 3.5.4.6) reaction in the activation of phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40) by the decrease in the adenylate energy charge was investigated using permeabilized yeast cells. Response of AMP deaminase, phosphofructokinase, and pyruvate kinase to variation in the energy charge is typical of the ATP-regenerating enzymes: an activation with the decrease in the energy charge under the in situ conditions. The addition of polyamine activated AMP deaminase in situ, resulting in the subsequent increase in ammonium production, which can stimulate the phosphofructokinase activity with the increase in the optimal energy charge value giving maximal activity of the enzyme. The optimal energy charge value of phosphofructokinase was 0.2-0.25 in the absence of ammonium ion and was shifted to the value above 0.5 by the addition of ammonium ion, whereas Pi, an activator of the enzyme showed little effect on the increase in the optimal energy charge value. The optimal energy charge value of AMP deaminase and pyruvate kinase was not affected by the addition of their effectors. Modulation of the response to the energy charge of phosphofructokinase and pyruvate kinase was analyzed in terms of the "activation coefficient," which was defined as the ratio of the activity at the energy charge of 0.6 to that at the value of 0.9. Activation of phosphofructokinase by the physiological decrease in the energy charge (0.9 to 0.6) can be enhanced by the increase in ammonium ion specifically, although the coefficient of pyruvate kinase remained unaffected by ammonium ion. These results suggest that the AMP deaminase reaction as an ammonium-forming reaction can participate in a key role in the stimulation of phosphofructokinase or glycolytic flux in cells.  相似文献   

10.
Adenylate deaminase from rat skeletal muscle has been studied with the objective of understanding how the activity of the enzyme is regulated in vivo. ATP and GTP inhibit the enzyme at low concentrations in the presence of 150 mM KCl. The ATP inhibition is reversed as the ATP concentration is raised to physiological levels. The GTP inhibition is reversed as the GTP concentration is raised to unphysiologically high levels. In the presence of physiological concentrations of ATP, the GTP inhibition is also greatly diminished, but inhibition by orthophosphate remains strong. The apparent affinities of the enzyme for GTP, ATP, and orthophosphate are reduced as the pH is decreased from 7.0 to 6.2. ADP also reduces the apparent affinities of the enzyme for the inhibitors. The regulatory effects of GTP, ATP, and ADP are produced primarily by their unchelated forms. Comparison of the kinetic behavior of the enzyme in vitro with metabolite concentrations in vivo indicates that the major variables that regulate the activity of adenylate deaminase of muscle in vivo are the concentrations of AMP, ADP, orthophosphate, and H+.  相似文献   

11.
The kinetic and regulatory properties of purified pigeon heart muscle AMP deaminase were investigated. In the presence of 100 mM potassium chloride, the enzyme exhibited a slightly sigmoidal type of kinetics. Addition of ATP to the incubation medium changed the reaction rate versus substrate concentration plot into a hyperbolic one, and caused a decrease of the half-saturation constant (S0.5). ADP presence caused the change of both the S0.5 and Vmax parameters, exerting either an activating or inhibitory effect, depending upon the substrate concentration. Orthophosphate inhibited the enzyme at all substrate concentrations, increasing the value of the S0.5 parameter. In the presence of ATP, ADP and orthophosphate, added to the incubation medium at approximately physiological concentrations, pigeon heart AMP deaminase still seems to preserve its activated form. Active long chain fatty acids clearly inhibited enzyme activity even at micromolar concentrations. Interpretation of the kinetic data in terms of the allosteric theory of Monod et al. (1965, J. Mol. Biol. 12, 88-118) indicates that heart muscle AMP deaminase may operate as a functionally active dimer.  相似文献   

12.
The effects of monovalent cations and inorganic phosphate, on gill AMP deaminase, were compared in different fresh water and sea water stenohaline and euryhaline Teleosts. Generally, sea water species displayed a lower sensitivity to these effectors than fresh water species. During salinity changes, the sensitivity of gill AMP deaminase to cations and phosphate were modified proportionally to the tolerance of a given species to variations of environmental salinity. In particular, these parameters were modified in the weak euryhaline, Salmo gairdneri, but not in the real euryhaline, Anguilla anguilla. In sea water adapted trout, the appearance of a modified AMP deaminase form, with similar properties to that found in sea water species, is suggested. When compared with the conclusions from the preceeding papers [Raffin (1986) Comp. Biochem. Physiol. 85B, 157-162; 85B, 163-171], the results suggest that modification of gill AMP deaminase by limited proteolysis should be a rather general adaptation mechanism to stress.  相似文献   

13.
Developmental changes of chicken liver AMP deaminase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The AMP deaminase activity measured in crude chicken liver extract did not change significantly during development. The livers of 10- and 14-day chick embryos, 1-day, 5-, 10- and 16-week-old chickens and adult hens were examined for the existence of multiple forms of AMP deaminase. Phosphocellulose column chromatography revealed the existence of two peaks of enzyme activity in the liver of 10- and 16-week-old chickens and adult hens. Kinetic studies with the preparations of AMP deaminase revealed sigmoid-shaped substrate-saturation curves at all developmental stages and hyperbolic-shaped saturation curves for the enzyme form appearing in 10-week-old chickens. All AMP deaminases investigated were susceptible to activation by ATP and inhibition by Pi. Kinetic and regulatory properties as well as pH optima of all the enzyme preparations tested indicate that AMP deaminase isolated from the embryos and from 1-day-old chicks was similar to the form I isolated from adult hens and differed significantly from the form II of this enzyme.  相似文献   

14.
The role of fatty acid and polyamine in the interaction of AMP deaminase (EC 3.5.4.6)-ammonium system with glycolysis was investigated using permeabilized yeast cells. (1) The addition of fatty acid inhibited the activity of AMP deaminase in situ, resulting in a decrease in the total adenylate pool depletion, and in the recovery of the adenylate energy charge. (2) The addition of fatty acid resulted in an indirect decrease in the activity of phosphofructokinase (EC 2.7.1.11) through a reduced level of ammonium ion; fatty acid itself did not inhibit phosphofructokinase activity in the presence of excess ammonium ion. (3) Spermine protected AMP deaminase from inhibition by fatty acid: the increased ammonium level enhanced phosphofructokinase activity, glycolytic flux and the recovery of the energy charge. In contrast, alkali metals, which are also activators of AMP deaminase had little effect on the inhibition of the enzyme. The inhibition of glycolysis by fatty acid and its reversal by polyamine can be accounted for by the changes in ammonium ion through the action of AMP deaminase-ammonium system, and the physiological relevance is discussed.  相似文献   

15.
Purified rat muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) binds tightly to rat myosin. The binding is abolished in the presence of low concentrations of various ligands. Pyrophosphate and GTP at concentrations as low as 0.1 micrometer were effective in abolishing the interaction between two proteins. Other nucleoside triphosphates were less effective than GTP and the concentrations required for 50% inhibition were approximately 0.3 to 0.7 micrometer. ADP and AMP are effective in inhibiting the interaction between two proteins, but they are less effective than the nucleoside triphosphates; 50% inhibition occurred at 34 micrometer with ADP and at 1 mM with AMP. Creatine phosphate and inorganic phosphate showed 50% inhibition at 5 to 6 mM. All of the compounds, which affected AMP deaminase activity, were effective in abolishing the interaction of the enzyme with myosin; however, the interaction-abolishing effects of the compounds are not parallel with their inhibitory effects on the deaminase activity. Although there exist three parental isozymes of AMP deaminase in the rat, all three enzymes interacted with myosin.  相似文献   

16.
1. The hepatic concentration of several nucleotides and metabolites was measured during the first few minutes after an intravenous load of fructose to mice. The first changes, observed at 30s, were a decrease in the concentration of Pi and a simultaneous accumulation of fructose 1-phosphate. The decrease in the concentrations of ATP and GTP proceeded more slowly. An increase in the concentration of IMP was detected only after 1 min and could therefore not be considered to be the cause of the accumulation of fructose 1-phosphate. 2. To explain the temporary burst of adenine nucleotide breakdown that occurs after a load of fructose, the kinetics of AMP deaminase (EC 3.5.4.6) from rat liver were reinvestigated at physiological (0.2 mM) concentration of substrate. For this purpose, a new radiochemical-assay procedure was developed. At 0.2mM-AMP a low activity could be measured, which was more than 90% inhibited by 5mM-Pi. ATP (3MM) increased the enzyme activity over 200-fold. Pi alone did not influence the ATP-activated enzyme, but 0.5mM-GTP caused a 60% inhibition. The combined effect of both inhibitors at their physiological concentrations reached 95%. 3. It is proposed that the rapid degradation of adenine nucleotides that occurs after a load of fructose is caused by a decrease in the concentration of both inhibitors, Pi and GTP, soon counteracted by the decrease in the concentration of ATP. 4. Some of the kinetic parameters of liver AMP deaminase were computed in terms of the concerted transition theory of Monod, Wyman & Changeux (1965) (J. Mol. Biol. 12, 88-118).  相似文献   

17.
At sublethal concentrations, cypermethrin caused a decrease in total proteins and an increase in free amino acids, protease, alanine aminotransferase and aspartate aminotransferase in liver, brain and gill tissues of Tilapia mossambica. Nitrogen metabolic profiles like ammonia, urea and glutamine were also elevated in all the tissues as a consequence of cypermethrin toxicity. Glutamate dehydrogenase, AMP deaminase and adenosine deaminase activity was also increased in the present study.  相似文献   

18.
AMP deaminase [EC 3.5.6.4] purified from chicken erythrocytes was inhibited by phytic acid (inositol hexaphosphate), which is the principal organic phosphate in chicken red cells. Kinetic analysis has indicated that this inhibition is of an allosteric type. The estimated Ki value was within the normal range of phytic acid concentration, suggesting that this compound acts as a physiological effector. Divalent cations such as Ca2+ and Mg2+ were shown to affect AMP deaminase by potentiating inhibition by lower concentrations of phytic acid, and by relieving the inhibition at higher concentrations of phytic acid. These results suggests that Ca2+ and Mg2+ can modify the inhibition of AMP deaminase by phytic acid in chicken red cells.  相似文献   

19.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

20.
Modulation of enzyme activity by inhibition and activation plays an important physiological role in regulation of cellular metabolism. Compared to the wealth of information available regarding inhibition of metabolic pathways, little is known about activation. Limited proteolysis of zymogens exemplifies irreversible activation. Reversible activation may involve post-translational modifications or dissociable binding of small molecules. Sometimes, chemical modification may also activate enzymes. The influence of small molecules on the reversible binding and activation of enzymes is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号