首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolated transverse tubule vesicles free of sarcoplasmic reticulum transport calcium with high affinity in the presence of ATP. The calcium transport by transverse tubules differs from calcium transport by sarcoplasmic reticulum. It is not increased by oxalate or phosphate, it has a different temperature dependence, it is inhibited by sub-micromolar concentrations of orthovanadate, it is stimulated by calmodulin, and is inhibited by quercetin without causing calcium release. The rates of calcium transport by transverse tubules are two orders of magnitude lower than those of sarcoplasmic reticulum, suggesting that the calcium pump protein of transverse tubules is a minor component of the membrane. Addition of calmodulin to transverse tubule vesicles--treated with high salt in the presence of EGTA to remove endogenous calmodulin--caused a marked stimulation of transport rates at low concentrations of calcium, and decreased from 1.0 to 0.3 microM the calcium concentration at which half-maximal rates of transport were obtained. A role for the transverse tubule calcium pump in maintaining low sarcoplasmic calcium concentrations is proposed.  相似文献   

2.
TheNa+/Ca2+ exchanger participates inCa2+ homeostasis in a variety of cells and has a key rolein cardiac muscle physiology. We studied in this work the exchanger ofamphibian skeletal muscle, using both isolated inside-out transversetubule vesicles and single muscle fibers. In vesicles, increasingextravesicular (intracellular) Na+ concentrationcooperatively stimulated Ca2+ efflux (reverse mode), withthe Hill number equal to 2.8. In contrast to the stimulation of thecardiac exchanger, increasing extravesicular (cytoplasmic)Ca2+ concentration ([Ca2+]) inhibited thisreverse activity with an IC50 of 91 nM. Exchanger-mediated currents were measured at 15°C in single fibers voltage clamped at90 mV. Photolysis of a cytoplasmic caged Ca2+ compoundactivated an inward current (forward mode) of 23 ± 10 nA(n = 3), with an average current density of 0.6 µA/µF. External Na+ withdrawal generated an outwardcurrent (reverse mode) with an average current density of 0.36 ± 0.17 µA/µF (n = 6) but produced a minimal increasein cytosolic [Ca2+]. These results suggest that, inskeletal muscle, the main function of the exchanger is to removeCa2+ from the cells after stimulation.

  相似文献   

3.
The presence of four cation pathways in membrane vesicles isolated from transverse tubules of frog and rabbit skeletal muscle was studied by measuring binding of specific blockers. Transverse tubules purified from frog muscle have a maximal binding capacity for [3H]nitrendipine (a marker for voltage-dependent calcium channels) of 130 pmol/mg of protein; this binding is strongly dependent on temperature and, at 37 degrees C, on the presence of diltiazem. Receptors for [3H]ethylenediamine tetrodotoxin (a marker for voltage-dependent sodium channels) and for 125I-labeled alpha-bungarotoxin (a marker for acetylcholine-mediated channels) showed maximal binding values of about 5 pmol/mg. The number of sodium-pumping sites in the isolated tubule vesicles, inferred from [3H]ouabain binding, was 215 pmol/mg. The high purity of this preparation makes feasible the use of these values as a criterion to judge the degree of purity of isolated preparations, and it allows investigation of transverse tubule contamination in other muscle membrane fractions.  相似文献   

4.
Summary The Ca2+ permeability of rabbit skeletal muscle sarcolemmal vesicles was investigated by means of radioisotope flux measurements. A membrane vesicle fraction highly enriched in sarcolemma, as revealed by enzymatic markers, was obtained from the 22–27% region of sucrose gradients after isopycnic centrifugation. The ability of sarcolemmal vesicles to exchange Na+ for Ca2+ was investigated by measuring Ca2+ influx into and efflux from sarcolemmal vesicles in the presence and absence of a Na+ gradient. It was found that Ca2+ movements were enhanced in the direction of the higher Na+ concentration. When intra- and extravesicular Na+ concentrations were high, Na+–Na+ exchange predominated and Na+–Ca2+ exchange was low or absent. The presence of the Ca2+ ionophore A23187 in the dilution medium resulted in the rapid release of Ca2+ and the elimination of the Na+-enhanced efflux of Ca2+, suggesting that internal rather than bound external Ca2+ was exchanged with Na+. La3+ abolished Na+–Ca2+ exchange and decreased overall membrane permeability. Na+–Ca2+ exchange was not due to sarcoplasmic reticulum or mitochondrial contaminants. This investigation suggests that skeletal muscle, like cardiac muscle and neurons, is capable of a transmembranous Na+–Ca2+ exchange.  相似文献   

5.
ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle   总被引:6,自引:0,他引:6  
A modified protocol for isolation of transverse tubules incorporated an extra stage of purification. The existence of an ATP-energized Ca2+ pump in transverse tubules isolated from rabbit skeletal muscle has been demonstrated. Isolated transverse tubules had a Ca-ATPase activity of 0.78 mu mol/min . mg; this was 300% in excess of that activity attributable to sarcoplasmic reticulum contamination. The distribution of part of the CaATPase activity and ATP-energized Ca2+ uptake coincided with the distribution of transverse tubules in isopycnic sucrose gradients loaded with mechanically disrupted triad junctions. Transverse tubules accumulated over 70 nmol of Ca2+/mg of protein; this uptake was abolished by the Ca2+ ionophore A23187. Neither digitoxin nor monensin inhibited Ca2+ uptake, indicating that Ca2+ accumulation did not occur through a sodium/calcium exchange. Conditions for half-maximal Ca2+ uptake were 5 micro M free Ca2+ and 10 micro M ATP. The Ca2+ pump of isolated transverse tubules was distinguished from the Ca2+ pump of sarcoplasmic reticulum and sarcolemma in that the transverse tubule Ca2+ pump: 1) was not enhanced by oxalate; 2) was not energized by acetyl phosphate, p-nitrophenyl phosphate, or 3-O-methylfluorescein phosphate; and 3) did not hydrolyze p-nitrophenyl phosphate or 3-O-methyl-fluorescein phosphate. Using Ca2+-dependent 3-O-methylfluorescein phosphatase as a marker for sarcoplasmic reticulum, the contamination of the transverse tubule preparation was calculated to be 6%. This agreed with a contamination level of 5% estimated by freeze-fracture electron microscopy.  相似文献   

6.
Tetanic stimulation of skeletal muscle fibers elicits a train of spikes followed by a long-lasting depolarization called the late after- potential (LAP). We have conducted experiments to determine the origin of the LAP. Isolated single muscle fibers were treated with a high potassium solution (5 mM or 10 mM K) followed by a sudden reduction of potassium concentration to 2.5 mM. This procedure produced a slow repolarization (K repolarization), which reflects a diffusional outflow of potassium from inside the lumen of the transverse tubular system (T system). Tetanic stimulation was then applied to the same fiber and the LAP was recorded. The time courses of K repolarization and LAP decay were compared and found to be roughly the same. This approximate equality held under various conditions that changed the time courses of both events over a wide range. Both K repolarization and the LAP became slower as fiber radius increased. These results suggest that LAP decay and K repolarization represent the same process. Thus, we conclude that the LAP is caused by potassium accumulation in the T system. A consequence of this conclusion is that delayed rectification channels exist in the T system. A rough estimation suggests that the density of delayed rectification channels is less in the T system than in the surface membrane.  相似文献   

7.
Biogenesis of transverse tubules in skeletal muscle in vitro   总被引:14,自引:0,他引:14  
The transverse (T) tubules of skeletal muscle are membrane tubules that are continuous with the plasma membrane and penetrate the mature muscle fiber radially to carry surface membrane depolarization to the sites of excitation-contraction coupling. We have studied the development of the T-tubule system in cultured amphibian and mammalian muscle cells using a fluorescent lipid probe and antibodies against T-tubules and plasma membranes. Both the lipid probe and the T-tubule antibody recognized an extensive tubular membrane system which subsequently differentiated into the T-system. At all developmental stages, the molecular composition of the T-system was distinct from that of the plasma membrane, suggesting that during myogenesis T-tubules and the plasma membrane form independently from each other and that exchange of membrane proteins between the two continuous compartments is restricted. In rat muscle cultures, T-tubule-specific antigens were first expressed in terminally differentiated myoblasts. Prior to myoblast fusion the antigens appeared as punctate label throughout the cytoplasm. Shortly after fusion the T-tubule-specific antibody labeled a tubular membrane system that extended from the perinuclear region and penetrated most parts of the cells. In contrast, the lipid probe, which labels the T-tubules by virtue of their direct continuity with the plasma membrane, only labeled short tubules extending from the plasma membrane into the periphery of the myotubes at the early stage in development. Thus, the assembly of the T-tubules appears to begin before their connections with the plasma membrane are established.  相似文献   

8.
The transverse tubular system (TTS) of skeletal muscle fibers represents the morphological basis for the inward spread of conduction of the electrical signal that triggers muscle contraction. A historical account of the main steps contributing to the elucidation of the structure and function of the TSS has been presented by Huxley (1971). While the localization of the TSS and its association with the sarcoplasmic reticulum (SR) is well documented; there is still a need further to develop our knowledge of the morphology of the connection between the TSS and the plasma membrane. It is generally believed that the TSS opens directly to the extracellular space and that there is continuity between its membrane and the sarcolemma. However, direct observation of such a connection has been clearly shown only for the myotome of fish (Franzini-Armstrong and Porter, 1964). In other muscle fibers, only indirect evidence of the connection has been provided by experiments showing penetration of extracellular tracers into the TSS. These extracellular markers were also observed inside another membrane-bounded compartment consisting of round profiles named "caveolae" (Yamada, 1955) or "pinocytotic vesicles" (Ashurst, 1969). The present study deals with the communication between the TTS, caveolae, and plasma membrane (Peachey, 1965); Ezerman and Ishikawa, 1967; Schiaffino and Margreth, 1968; and Rayns et al., 1968). A detailed study of the caveolae compartment was undertaken with ruthenium red as an electron-dense tracer. As a result of this study, we propose that in certain species the caveolae compartment represents the transitional region in the connection between the TSS and the sarcolemma.  相似文献   

9.
The binding of nitrendipine to transverse (T) tubules isolated from skeletal muscle triads is inhibited by dithiothreitol (KI approximately 0.05 mM) and glutathione (KI approximately 3 mM). The t 1/2's of inhibition (18.3 and 11.5 min, respectively) suggest that these hydrophylic reagents act upon the exposed surface of the vesicles. Dithiothreitol shifts the apparent KD for nitrendipine from 8.5 nM to 30 nM without altering the Bmax extrapolated by Scatchard analysis. That T-tubules isolated by disruption of triad junctions are constrained to have the protoplasmic (P) face uniformly exposed was experimentally confirmed. These studies show that a sulfhydryl residue on the P-face of the T-tubule influences the affinity of the receptor for dihydropyridines.  相似文献   

10.
B M Curtis  W A Catterall 《Biochemistry》1986,25(11):3077-3083
The purified calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubule membrane consists of three subunits: alpha with Mr 135 000, beta with Mr 50 000, and gamma with Mr 33 000. Purified receptor preparations were incorporated into phosphatidylcholine (PC) vesicles by addition of PC in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and removal of detergent by molecular sieve chromatography. Forty-five percent of the alpha, beta, and gamma polypeptides and the [3H]dihydropyridine/receptor complex were recovered in association with PC vesicles. The rate of dissociation of the purified and reconstituted dihydropyridine/receptor complex was identical with that in T-tubule membranes, and allosteric modulation by verapamil and diltiazem was retained. The reconstituted calcium antagonist receptor, when occupied by the calcium channel activator BAY K 8644, mediated specific 45Ca2+ and 133Ba2+ transport into the reconstituted vesicles. 45Ca2+ influx was blocked by the organic calcium antagonists PN200-110 (K0.5 = 0.2 microM), D600 (K0.5 = 1.0 microM), and verapamil (K0.5 = 1.5 microM) and by inorganic calcium channel antagonists (La3+ greater than Cd2+ greater than Ni2+ greater than Mg2+) as in intact T-tubules. A close quantitative correlation was observed between the presence of the alpha, beta, and gamma subunits of the calcium antagonist receptor and the ability to mediate 45Ca2+ or 133Ba2+ flux into reconstituted vesicles. Comparison of the number of reconstituted calcium antagonist receptors and functional channels supports the conclusion that only a few percent of the purified calcium antagonist receptor polypeptides are capable of mediating calcium transport as previously demonstrated for calcium antagonist receptors in intact T-tubules.  相似文献   

11.
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.  相似文献   

12.
Sodium-calcium exchange in sarcolemmal vesicles from tracheal smooth muscle   总被引:1,自引:0,他引:1  
Sarcolemmal vesicles prepared by a new procedure from bovine tracheal smooth muscle were found to have a Na-Ca exchange activity that is significantly higher than that reported for different preparations from other types of smooth muscle. The exchange process system co-purified with 5'-nucleotidase, a plasma membrane marker enzyme, and was significantly enriched (over 100-fold) compared to mitochondria (cytochrome-c oxidase) but only slightly enriched (4-fold) compared to sarcoplasmic reticulum (NADPH-cytochrome-c reductase). The Na+ dependence of Ca2+ transport was demonstrated through both uptake and efflux procedures. The uptake profile with respect to Ca2+ was monotonic with a linear vo VS. vo.S-1 plot. The resultant Km of Ca2+ from the airway sarcolemmal vesicles (20 microM) was similar in magnitude to the Km of cardiac sarcolemmal vesicles (30 microM). Tracheal vesicles demonstrated a Vmax of 0.3-0.5 nmol.mg-1.s-1 which is significantly higher than that reported in preparations from other smooth muscle types. Furthermore, two processes found to stimulate cardiac Na-Ca exchange, pretreatment with either a mixture of dithiothreitol and Fe2+ or with chymotrypsin, were ineffective on the tracheal smooth muscle. Thus, the Na-Ca exchanger identified in tracheal smooth muscle appears to be different from that observed in cardiac muscle, implying that regulation of this activity may also be different.  相似文献   

13.
Summary Caveolins are small integral membrane proteins with a vital role in the formation and function of caveolae. In this review, the role of caveolin-3, a predominantly muscle-specific member of the caveolin family, will be examined. We speculate that insights into the mechanism of caveolae formation may give clues into the formation of another plasma membrane domain, the transverse-tubule system of muscle cells and propose a role for cholesterol-enriched lipid rafts in this process. In addition, we review recent findings regarding caveolin-3 in differentiated muscle cells and, particularly, in dystrophic muscle.Abbreviations DIG detergent-insoluble glycosphingolipid-enriched complex - DPC dystrophin protein complex - eNOS/nNOS endothelial/neuronal nitric oxide synthase - pTT precursor transverse tubule - T-tubule transverse tubule  相似文献   

14.
Highly purified transverse tubule membranes isolated from frog skeletal muscle phosphorylate phosphatidylinositol to phosphatidylinositol 4-phosphate and phosphatidylinositol (4,5)-bisphosphate. The two phosphorylation reactions have different calcium requirements. Phosphorylation of phosphatidylinositol to phosphatidylinositol 4-phosphate, which takes place in both isolated transverse tubules and sarcoplasmic reticulum membrane, is independent of calcium in a range of concentrations from 10(-9) to 10(-6) M, and is progressively inhibited to 10% of the maximal values by increasing calcium to 10(-4) M or higher (K0.5 = 5 X 10(-6) M). In contrast, phosphorylation of phosphatidylinositol 4-phosphate to phosphatidylinositol (4,5)-bisphosphate, a reaction exclusively present in transverse tubule membranes, is maximal at calcium concentrations higher than 2 X 10(-6) M and decreases to 30% of maximal values at calcium concentrations of 2 X 10(-7) M or lower (K0.5 = 10(-6) M). Unlike frog membranes, transverse tubules from rabbit muscle need exogenous phosphatidylinositol 4-phosphate in order to produce the bisphosphate derivative in the same range of calcium concentrations. Inositol (1,4,5)-trisphosphate has been proposed recently as a chemical messenger in excitation-contraction coupling in skeletal muscle. Calcium regulation of the synthesis of phosphatidylinositol (4,5)-bisphosphate, the membrane-bound precursor of inositol (1,4,5)-trisphosphate, might have physiological implications regarding modulation of excitation-contraction coupling by intracellular calcium levels.  相似文献   

15.
16.
17.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adrenergic receptor, adenylate cyclase, and protein kinase-stimulated phosphorylation showed: 1) beta-adrenergic receptor was detected in transverse tubules with a receptor density of 0.61 pmol/mg of protein. No significant binding was detected in longitudinal reticulum or in terminal cisternae. 2) Isoproterenol-stimulated adenylate cyclase was present in microsomes but was similarly confined to the transverse tubular fraction. The activity of F- stimulated cyclase in transverse tubules was 2.3 nmol/mg of protein/min. 3) No phosphorylation of microsomes by cyclic AMP and protein kinase could be detected. We conclude that the action of epinephrine on skeletal muscle is mediated through receptors and adenylate cyclase in the external membrane.  相似文献   

18.
The affinity and number of binding sites of [3H]ouabain to isolated transverse (T) tubules were determined in the absence and presence of deoxycholate. In both conditions the KD was approximately 53 nM while deoxycholate increased the number of binding sites from 3.5 to 37 pmol/mg protein. We concluded that the ouabain binding sites were located primarily on the inside of the isolated vesicle and that the vesicles were impermeable to ouabain. ATP induced a highly active Na+ accumulation by the T tubules which increased Na+ in the T tubular lumen by almost 200 nmol/mg protein. The accumulation had an initial fast phase lasting 2-3 min and a subsequent slow phase which continued for at least 40 min. The rate of the initial fast phase indicated a turnover number of 20 Na+/s. The Na+ accumulation was prevented by monensin but was unaffected by valinomycin. Ouabain did not influence Na+ uptake, but digitoxin inhibited it. At low K+ the accumulation of Na+ was reduced 3.7-fold below the value at 50 mM K+. 86Rb, employed as a tracer to detect K+, showed a first phase of K+ release while Na+ was accumulated. After 2-3 min, K+ was reaccumulated while Na+ continued to increase in the lumen. T tubules accumulated Cl- on addition of ATP. This suggested that ATP initiated an exchange of Na+ for K+ followed by uptake of Na+ and K+ accompanied by Cl-.  相似文献   

19.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell Cell segments in an amber low-speed (800 × g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100 000 × g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate.Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined by a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basement membrane, could not be detected in this fraction.  相似文献   

20.
The level and proportion of lipids and their fatty acid composition were analyzed in highly purified transverse tubule membranes of amphibian skeletal muscle. Tubule membranes show (a) a higher content of lipids, (b) a higher phospholipid/cholesterol ratio and (c) a different phospholipid composition from other subcellular fractions, such as the light and heavy membranes from sarcoplasmic reticulum, which are similar in lipid profile. Transverse tubule membranes are characterized by a high percentage of phosphatidylserine and sphingomyelin and a low proportion of phosphatidylcholine compared with the other membranes. All three show a high proportion of ethanolamine plasmalogens (50% of the total ethanolamine glycerophospholipid). Transverse tubule membrane lipids contain a high proportion of 20- and 22-carbon polyunsaturated fatty acids, predominantly 20:4, 20:5, 22:5 and 22:6. Arachidonate predominates in phosphatidylinositol, eicosapentaenoate and docosahexaenoate in ethanolamine and serine glycerophospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号