首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence or absence of zooxanthellae near the tip of Acropora formosa branches is correlated with apical skeletal structure and extension rates. White (zooxanthellae-free) tips are lightly calcified, possess thin, widely spaced skeletal elements and bear only a few, poorly developed radial corallites. Brown tips are heavily calcified, possess smaller axial corallites and larger, more numerous radial corallites. White tips exhibit a range of normally distributed extension rates. Brown tips do not extend, but radial growth and internal calcification continue. These processes progressively alter the appearance and density of brown tipped branches. In addition, the axial corallite of brown tips becomes progressively smaller and is eventually indistinguishable from adjacent radial corallites. Although brown and white tips can change from one form to the other, with a corresponding change in extension rate, it is hypothesized that in brown tips with degenerated axial corallites, a new axial corallite must develop before extension can resume. Brown tips predominate in the interior of arborescent colonies, where space for continued extension is limited. They may therefore represent a means of coordination of growth within a colony. Field and experimental evidence suggest that brown tips may develop in response to micro-environmental conditions. White, zooxanthellae-free zones are also characteristic of other branched and plate-forming species, which exhibit rapid extension in a localized region of the colony.  相似文献   

2.
Protoheliolites is an early heliolitine coral characterized by closely spaced corallites separated in places by sparse coenenchyme. Growth characteristics in the type species, P. norvegicus, are revealed by detailed analysis based on serial peels and thin sections of coralla from the uppermost Katian of north‐western Estonia. Colonies of this species had a strong ability to recover from damage and partial mortality, resulting in various forms of rejuvenation, regeneration, fusion and reorganization of corallites; in some cases, this involved relatively large areas of undifferentiated soft parts. The shells of commensal cornulitids became enclosed in host coralla during colony growth. Coralla of P. norvegicus exhibit distinctive growth cycles due to responses to seasonal changes. The production of new corallites by coenenchymal increase usually occurred in low‐density bands, in which corallites generally display round to subrounded transverse outlines. In high‐density bands, the corallites became crenulated, their wall thickness increased, septal development was more pronounced, and the amount of coenenchyme increased. In addition to these cyclomorphic changes, there were significant astogenetic changes during growth. Compared with the early stage of colony development, distinctive characteristics in the late astogenetic stage include a decrease in the growth rate of the colony, better coordination among corallites, maximum development of corallite crenulations and septa in high‐density bands, more numerous coenenchymal tubules and a greater proportion of corallum area occupied by coenenchyme. In general, the role of polyps in determining morphological characteristics of individual corallites, such as tabularium area, corallite crenulations and wall thickness, was subordinate to the astogeny of the colony. Growth characteristics including colony‐wide coordination of polyp behaviour and subjugation of individuals to restore the colony following damage suggest a strong astogenetic control and high level of colony integration. Protoheliolites probably arose from a heliolitine genus rather than from a nonheliolitine group as some authors have proposed.  相似文献   

3.
The social pseudoscorpion Paratemnoides nidificator is a common species in the Brazilian tropical savannah (Cerrado), where colonies are found under the bark of trees. In this environment, colonies hunt for large insects, subduing them by cooperative effort. Small insects are offered as food to nymphs, but large prey tends to be shared by colony members. We investigated the cooperative capture of large prey (Scarabaeidae beetles) by colonies of P. nidificator. During this process, some adults are involved in the immobilization and killing of prey. However, other adults stay as profiteers and do not offer help to subdue the prey. After prey immobilization, pseudoscorpions perform a hierarchical food share in which the attackers begin sucking the prey. These individuals favor the nymphs, offering them the prey and protection during feeding. Profiteer individuals are the last to feed on the carcass. In P. nidificator, obligatory parental care probably favors the evolution of behavioral strategies that prioritize the feeding of juveniles. This mechanism can provide better-quality food for the attackers but offers food to all colony members.  相似文献   

4.
Based on detailed study of transverse serial sections, we recognize various modes of corallite increase in a multichain cateniform coral, Manipora amicarum from the Selkirk Member, Red River Formation, in Manitoba. One type of axial increase and four types of lateral increase involve normal, undamaged corallites, and one type of axial increase and one type of lateral increase occur during recovery processes of corallites damaged by sediment or bioclast influx. All but one of these types of increase are comparable to those in a single‐chain coral, Catenipora foerstei, which we previously documented from the same stratigraphic unit and locality. In M. amicarum, the formation of double ranks and agglutinated patches of corallites by normal corallites, and by recovery processes following corallite damage, is common and presumably genetically controlled. Agglutinated patches originate differently in C. foerstei, occurring sporadically or temporarily in only some coralla. Average annual vertical corallum growth in M. amicarum, as indicated by cyclic fluctuations of tabularial area, is higher than in C. foerstei, which has comparatively smaller corallites. In general, annual growth in M. amicarum is positively correlated with average tabularial area, negatively correlated with frequency of damaged corallites, and is not related to the frequency of corallite increase. In C. foerstei, however, there is a positive association between annual growth rate and the frequency of increase by damaged corallites, related to episodes of sediment or bioclast influx probably generated by storms. In comparison with C. foerstei, M. amicarum has a low frequency of corallite termination and extensive partial mortality is rare. It seems that the relatively rapid overall vertical corallum growth in M. amicarum was effective for protecting the coral from unfavourable situations, possibly by maintaining the growth surface higher above the substrate than in C. foerstei. Although these two species show many similarities in the types of corallite increase, their reactions and strategies in relation to physical disturbance were quite different.  相似文献   

5.
Erect helical colony forms have evolved at least six separate times within the Bryozoa, but only among those in which branches are composed of a single layer of feeding zooids. The four best known genera with helical colony forms evolved independently, and each occupied different benthic marine environments, achieved different growth habits, and utilized different aspects of an array of functional potentials resulting from the radially symmetrical colonies. Examination of the distribution of these four genera ( Archimedes , Bugula , Crisidmonea , and Retiflustra ) within a theoretical morphospace of hypothetical helical colony form reveals that each occupies its own characteristic region of morphospace, broadly overlapping in some dimensions but separated in others. The genera differ markedly in the branching densities within their filtration-sheet whorls, reflecting their phylogenetic legacies rather than constructional or functional constraints associated with helical growth. In contrast, all tend toward helices in which the radiating whorls of the unilaminate branches are held at an average of 50–60° to the central axis of the colony, and this may reflect a common functional optimum associated with the cilia-driven, auto-generated currents within the helix. The region of morphospace characterized by high values of surface area – i.e. helical geometries with branches orientated at very low angles to the central axis, and with very closely spaced whorls along the axis – is entirely empty of bryozoans, and these geometries apparently represent functionally unrealistic colony forms.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 235–260.  相似文献   

6.
Prey exploitation was documented for Hippoglossoides platessoides, Pleuronectes ferrugineus , and P. americanus collected from southeast Sable Island Bank in February and June 1989. Diets varied significantly by sample and with fish species and length. Of 239 species consumed by flatfishes, 66 were determined to be principal prey. Crustaceans, particularly amphipods, were the most frequently exploited prey of all three flatfish species. Small H. platessoides fed on suprabenthic fauna, while larger fish exploited epifauna and hyperiid suprafauna. P. ferrugineus exploited epibenthic fauna, consuming crustaceans and tunicates when small and polychaetes when larger. P. americanus preyed on epifauna; smaller fish exploited polychaetes while larger fish usually consumed crustaceans associated with ectoproct colonies. Feeding intensity was dramatically lower in February, food being found in stomachs of only 36% of H. platessoides and 49% of P. ferrugineus , and lacking in the stomachs of P. americanus . In June, stomachs of 86% of H. platessoides , 94% of P. ferrugineus and 96% of P. americanus contained food. Results indicate that prey resources for the three flatfish species are partitioned by specific habitat and prey type preferences.  相似文献   

7.
Generalist predator populations are sometimes made up of individuals that specialize on particular prey items. To examine specialization in thick‐billed murres Uria lomvia during self‐feeding we obtained stomach contents and muscle stable isotope values for 213 birds feeding close to five colonies in the Canadian Arctic. Adults were less specialized during self‐feeding than during chick‐provisioning. Nonetheless, particular specialists clustered together within the foraging network. While sexes showed similar levels of specialization, individuals of the same sex clustered together within the foraging network. The significant degree of clustering regardless of sex showed that individuals specializing on one prey item tend to also specialize on another, although network topology varied from colony to colony. Adult muscle stable isotope values correlated with the stable isotope values of the prey found in stomachs, at least at the one colony with relevant prey data, suggesting that specializations are maintained over time. Degree of specialization increased with niche width across the five colonies, but similarity in gastro‐intestinal and bill morphology was independent of dietary similarity. Thus, although individual specialization is thought to play a key role in sympatric speciation through trophic specialization, we found no support for an association between morphology and foraging patterns in our species. We conclude that self‐feeding murres show clustered dietary specialization, and that specialization is highest where diet is most diverse.  相似文献   

8.
Microbial eukaryotes, critical links in aquatic food webs, are unicellular, but some, such as choanoflagellates, form multicellular colonies. Are there consequences to predator avoidance of being unicellular vs. forming larger colonies? Choanoflagellates share a common ancestor with animals and are used as model organisms to study the evolution of multicellularity. Escape in size from protozoan predators is suggested as a selective factor favoring evolution of multicellularity. Heterotrophic protozoans are categorized as suspension feeders, motile raptors, or passive predators that eat swimming prey which bump into them. We focused on passive predation and measured the mechanisms responsible for the susceptibility of unicellular vs. multicellular choanoflagellates, Salpingoeca helianthica, to capture by passive heliozoan predators, Actinosphaerium nucleofilum, which trap prey on axopodia radiating from the cell body. Microvideography showed that unicellular and colonial choanoflagellates entered the predator's capture zone at similar frequencies, but a greater proportion of colonies contacted axopodia. However, more colonies than single cells were lost during transport by axopodia to the cell body. Thus, feeding efficiency (proportion of prey entering the capture zone that were engulfed in phagosomes) was the same for unicellular and multicellular prey, suggesting that colony formation is not an effective defense against such passive predators.  相似文献   

9.
An exceptionally well‐preserved, unusual biostrome composed of the framebuilding cateniform tabulate coral Halysites catenularius (Linnaeus, 1767) bears an assemblage of the relatively large solitary cystiphyllid rugosan Cystiphyllum visbyense Wedekind, 1927. The corallites of solitary cystiphyllids are embedded within the ranks of the halysitid colonies, which developed on a soft, muddy substrate and in relatively turbid water. The cystiphyllid larvae successively settled mostly on the ranks of halysitid colonies and on colonies of the tiny phaceloid rugose coral Nanophyllum ramosum Johannessen, 1995, whereas calice‐in‐calice recruitment was not successful for these cystiphyllid corals. Further growth of C. visbyense was supported by rhizoid structures, which were most frequently developed on the cardinal (convex) side of the corallite. The process of formation of the rhizoid structures is here discussed and explained in detail, showing that they were formed by the extension of the basal ectodermal tissue of the polyp. The cystiphyllids, which settled on the walls of living corallites of halysitid colonies, used sweeper tentacles to kill the smaller polyps of the colony to maintain the space around them and expand. Hence, they ultimately used the halysitid colonies only as a hard substrate to stabilize their position on the soft muddy sediment.  相似文献   

10.
The skeleton morphology of the azooxanthellate cold-water coral Lophelia pertusa can be strongly influenced by invasive boring sponges that infest corallites in the still living part of the colony. Atypically swollen corallites of live Lophelia pertusa from the Galway Mound (Belgica Carbonate Mound Province, Porcupine Seabight, NE Atlantic), heavily excavated by boring organisms, have been examined with a wide range of non-destructive and destructive methods: micro-computed tomography, macro- and microscopic observations of the outer coral skeleton, longitudinal and transversal thin sections and SEM analyses of coral skeleton casts. As a result, three excavating sponge species have been distinguished within the coral skeleton: Alectona millari, Spiroxya heteroclita and Aka infesta. Furthermore, four main coral/sponge growth stages have been recognised: (1) cylindrical juvenile corallite/no sponge cavities; (2) flared juvenile corallite/linear sponge cavities (if present); (3) slightly swollen adult corallites/chambered oval sponge cavities; (4) very swollen adult corallites/widespread cavities. The inferred correlation between corallite morphology and boring sponge infestation has been detected in micro-computed tomography (micro-CT) images and confirmed in sponge trace casts and peculiar features of coral skeleton microstructure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

11.
Predation may reduce prey numbers in such extent that prey may be depleted, which has negative effects on predator populations. Prey depletion would be more likely when the number of predators increase and/or concentrate their activity in a certain area, as is the case of colonial birds. As a matter of fact, food depletion due to intraspecific competition is considered a major cost of coloniality, and several studies have shown indirect evidence of this. However, no direct measures of food depletion have been provided along with its consequences for the fitness of the colony inhabitants. We carried out a field study with the lesser kestrel Falco naumanni, a raptor that breeds in colonies ranging from two to dozens of pairs. During the nestling period we sampled the main prey of the kestrels around different sized colonies at increasing distances. At the same time, we recorded hunting distances and prey delivery rates to the nest. In addition, we monitored the reproductive success in colonies of different sizes. Lesser kestrels feed their nestlings mainly with grasshoppers and these prey became depleted through the season in the surroundings of the large colonies. Prey depletion made kestrels fly longer distances to forage and prey delivery rates to the nest decreased. Lower feeding rates were not compensated by bringing larger prey, hence, the net amount of energy provided to the chicks decreased with the date in large colonies. By contrast, none of this occurred around small colonies, where both prey abundance and hunting distance remained constant throughout the season. As a consequence, the seasonal decline in the reproductive success (number of fledglings and fledgling body condition) was greater the larger the colony. Thus, these results evidence that food depletion and its fitness costs are related to colony size, as they are suffered by the kestrels breeding in large colonies but not by those settled at small ones. Finally, the consequences of prey depletion on the demographic dynamics and the regulation of colony size are discussed.  相似文献   

12.
Generalist seabirds forage on a variety of prey items providing the opportunity to monitor diverse aquatic fauna simultaneously. For example, the coupling of prey consumption rates and movement patterns of generalist seabirds might be used to create three‐dimensional prey distribution maps (‘preyscapes’) for multiple prey species in the same region. However, the complex interaction between generalist seabird foraging behaviour and the various prey types clouds the interpretation of such preyscapes, and the mechanisms underlying prey selection need to be understood before such an application can be realized. Central place foraging theory provides a theoretical model for understanding such selectivity by predicting that larger prey items should be 1) selected farther from the colony and 2) for chick‐feeding compared with self‐feeding, but these predictions remain untested on most seabird species. Furthermore, rarely do we know how foraging features such as handling time, capture methods or choice of foraging location varies among prey types. We used three types of animal‐borne biologgers (camera loggers, GPS and depth‐loggers) to examine how a generalist Arctic seabird, the thick‐billed murre Uria lomvia, selects and captures their prey throughout the breeding season. Murres captured small prey at all phases of a dive, including while descending and ascending, but captured large fish mostly while ascending, with considerably longer handling times. Birds captured larger prey and dove deeper during chick‐rearing. As central place foraging theory predicted, birds travelling further also brought bigger prey items for their chick. The location of a dive (distance from colony and distance to shore) best explained which prey type was the most likely to get caught in a dive, and we created a preyscape surrounding our study colony. We discuss how these findings might aid the use of generalist seabirds as bioindicators.  相似文献   

13.
Summary Selection might favor group foraging and social feeding when prey are distributed in patches that do not last long enough for a solitary individual to consume more than a small fraction of them (Pulliam and Millikan 1982; Pulliam and Caraco 1984). Here we considered the foraging behavior of a social spider, Anelosimus eximius, in light of this ephemeral resource hypothesis. This species builds large webs in which members cooperate to capture a wide variety of different sizes and types of prey, many of which are very large. The capture success of this species was very high across all prey sizes, presumably due to the fact that they foraged in groups. Group consumption times in natural colonies for all prey larger than five mm were less than the time that dead insects remained on the plastic sheets that we used as artificial webs. Solitary consumption estimates, calculated from the rate at which laboratory individuals extracted insect biomass while feeding, were the same as the residence times of insects on artificial webs in the field for insects between 6 and 15 mm in length and were significantly longer than the persistence of insects on plastic sheets for all larger insects. Large prey, that contribute substantially to colony energy supplies, appeared to be ephemeral resources for these spiders that could not be consumed by a single spider in the time they were available. These factors made the food intake of one spider in a group less sensitive to scavenging by others and could act to reinforce the social system of this species.  相似文献   

14.
Choanoflagellates are unicellular and colonial aquatic microeukaryotes that capture bacteria using an apical flagellum surrounded by a feeding collar composed of actin-filled microvilli. Flow produced by the apical flagellum drives prey bacteria to the feeding collar for phagocytosis. We report here on the cell biology of prey capture in rosette-shaped colonies and unicellular “thecate” or substrate attached cells from the choanoflagellate S. rosetta. In thecate cells and rosette colonies, phagocytosis initially involves fusion of multiple microvilli, followed by remodeling of the collar membrane to engulf the prey, and transport of engulfed bacteria into the cell. Although both thecate cells and rosette colony cells produce ∼70 nm “collar links” that connect and potentially stabilize adjacent microvilli, only thecate cells were observed to produce a lamellipod-like “collar skirt” that encircles the base of the collar. This study offers insight into the process of prey ingestion by S. rosetta, and provides a context within which to consider potential ecological differences between solitary cells and colonies in choanoflagellates.  相似文献   

15.
Sentoku, A. & Ezaki, Y. 2012: Regularity and polarity in budding of the colonial scleractinian Dendrophyllia ehrenbergiana: consequences of radio‐bilateral symmetry of the scleractinian body plan. Lethaia, Vol. 45, pp. 586–593. Regularities and polarity in budding of the azooxanthellate scleractinian Dendrophyllia ehrenbergiana were examined with the aim of understanding the developmental constraints on the formation of colonies. Its mode of budding, in light of the orientations of directive septa of offsets and the inclination angle of budding, is consistent with that of other dendrophyllids; however, the offsets of D. ehrenbergiana only occur near the two primary septa on the convex side of individual corallites, showing a plane of bilateral symmetry with a distinct polarity. These regularities and polarity are seen in the axial and its derived corallites throughout growth. Of note, the polarity at individual corallites is clearly reflected in subsequent colony growth by the branching pattern and corallite number. These characteristics imply the presence of radio‐bilateral symmetrical constraints on the asexual reproduction of the Scleractinia and give us invaluable clues to the understanding of shape‐making mechanisms of marine modular organisms. □Asexual reproduction, azooxanthellate coral, budding, colony, Dendrophyllia ehrenbergiana, polarity.  相似文献   

16.
Y. Ezaki  & Y. Yasuhara 《Palaeontology》2004,47(5):1075-1091
New modules arise in colonial corals as the result of asexual reproduction. The Silurian rugosan Stauria favosa ordinarily exhibits cerioid coralla with a characteristic cross-shaped axial structure and a typical pattern of parricidal increase. Quadripartite increase at the sites of the four protosepta is most common, whereas cases of tripartite increase are rare. Parental protosepta are transformed into dividing walls, where the four protosepta first appear with a definite polarity in offset corallites. Daughter corallites inherit metasepta as metasepta, and catasepta as catasepta, within the same quadrants as those of the parent. Metasepta are inserted serially, following Kunth's rule, as is characteristic of rugosan protocorallites. As each daughter corallite derived immediately from the same parent is arranged with identical polarity, it grows equally and evenly both individually and as a group. Daughters thus form protosepta and metasepta under strict phylogenetic and developmental constraints. However, individual corallites grow and reproduce autonomously, by using all available skeleton and space of the parent. Although each module cannot modify essential modes of division, flexibility of the system was via changes in the density and arrangement of corallites, and regulating modes of growth, in tandem with adjacent corallites within the corallum. It is probable that regularity, due to constraints of several origins, as well as flexibility are typical of other rugosan colonies and played an important role in growth dynamics between corallites and corallum.  相似文献   

17.
We studied the efficiency of the hunt and the characteristics of cooperation during the prey capture in a social spider Anelosimus eximius. Two natural types of prey of roughly the same length (20 mm) were used: grasshoppers (Orthoptera) and moths (Lepidoptera); 128 tests were made on 14 colonies, the smallest with 20 and the largest with 1,700 individuals. Test times were 12.00 h, defined as an inactive period for the spiders and 18.00 h, defined as an active period. Overall capture rate of intercepted prey was 66%: it was higher in large colonies or at 18.00 h, when more spider alerts were triggered by the struggling prey. Characteristics of cooperation during capture did not vary with colony size. Capture rate was higher for grasshoppers than moths (73%-58%) in spite of similar number of alerts (76%-87%); so moths must have been more difficult to capture. For both prey types, large colonies capture more rapidly and so had advantages in terms of time gain. We showed that cooperation depended on prey type: more spiders mobilised to attack moths and attack was faster than on grasshoppers. This may be interpreted as an adaptive response of the group to the prey type.  相似文献   

18.
Summary The searching and handling behaviors ofHarmonia axyridis larvae to the colony ofRhopalosiphum padi were experimentally examined and the processes of their aggregation to the prey colony was analyzed. All the instar larvae searched for the prey at random and they have no preference to the prey colony, but except the 1st instar they tend to aggregate to the plants with prey colonies. The 1st instar larvae tend to stay on the plants they once located. The 2nd to 4th instar larvae often emigrate from the plants without prey colony but seldom emigrate from the plants with prey colonies, and consequently, they aggregate to the plants with prey colonies. The expense of time to eat prey (in the 2nd and 3rd instars) and the change of searching behavior for the prey after feeding (in the 3rd and 4th instars) are responsible for the larval concentration to prey colony as a trapping effect for predators to prey colony.  相似文献   

19.
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral‐feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within‐colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility.  相似文献   

20.
Sentoku, A. & Ezaki, Y. 2011: Constraints on the formation of colonies of the extant azooxanthellate scleractinian coral Dendrophyllia arbuscula. Lethaia, Vol. 45, pp. 62–70. Scleractinia display a variety of growth forms, whether zooxanthellate or azooxanthellate, as the consequence of the combined effects of both intrinsic and extrinsic factors. New modules arise in colonial corals through asexual reproduction, including budding and division. The azooxanthellate, branching dendrophylliid Dendrophyllia arbuscula van der Horst 1922 , is a good species to investigate intrinsic regularities in budding, because: (1) the lateral corallites always occur in the vicinity of four primary septa, excluding the two directive primary septa; (2) the two directive septa in lateral corallites tend to be oriented almost perpendicular to the growth orientation of parental corallites; (3) the lateral corallites grow more‐or‐less diagonally upwards; and (4) these regularities are retained from the axial to the derived lateral corallites during colony growth. Accordingly, a colony of apparently complex dendroid corals is formed according to certain universal rules that apply to successive generations of corallites. The presence of two opposite sectors in which budding do not occur seems to be common to other azooxanthellate scleractinian families. Regularities, other than the orientation of the directive septa, are also commonly found at least in other azooxanthellate dendrophylliid genera. These regularities suggest the presence of strict developmental constraints on the asexual reproduction of the Scleractinia, both extant and extinct. These regularities by azooxanthellate scleractinians, as one of the representative colonial metazoan groups, provide us with fundamental data with which we can understand how colonies are constructed. □Azooxanthellate coral, budding, colony, Dendrophyllia arbuscula, regularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号