首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.  相似文献   

2.
Drought is one of the main factors affecting the productivity of agricultural crops, and plants respond to such stress by activating various physiological and biochemical mechanisms against dehydration. The present study investigated two varieties of sugarcane (Saccharum spp.) with contrasting responses to drought (RB867515, more tolerant; and RB855536, less tolerant) and subjected them to progressive drought conditions (2, 4, 6 and 8 days) followed by rehydration. Drought caused a decrease in water potential (ψw) and osmotic potential (ψos) in the leaves, which recovered to normal levels after rehydration only up to the fourth day of drought. Water stress changed the carbon metabolism of leaves by reducing starch and sucrose contents and increasing glucose and fructose contents in both varieties. Water deficit caused a significant reduction in the maximum quantum efficiency of photosystem II (Fv/Fm) and effective quantum yield (ΦPSII) in both varieties; however, RB867515 recovered faster after rehydration. Under water stress, the more tolerant variety RB867515 exhibited increased activity of the antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase compared with the RB855536 variety. The results suggest that RB867515 is more tolerant to drought conditions because of a more efficient antioxidant system, which results in reduced photosynthesis photoinhibition during water stress, thus revealing itself as a potential physiological marker for drought tolerance studies.  相似文献   

3.
4.
Genetic improvement for drought tolerance in chickpea requires a solid understanding of biochemical processes involved with different physiological mechanisms. The objective of this study is to demonstrate genetic variations in altered metabolic levels in chickpea varieties (tolerant and sensitive) grown under contrasting water regimes through ultrahigh‐performance liquid chromatography/high‐resolution mass spectrometry‐based untargeted metabolomic profiling. Chickpea plants were exposed to drought stress at the 3‐leaf stage for 25 days, and the leaves were harvested at 14 and 25 days after the imposition of drought stress. Stress produced significant reduction in chlorophyll content, Fv/Fm, relative water content, and shoot and root dry weight. Twenty known metabolites were identified as most important by 2 different methods including significant analysis of metabolites and partial least squares discriminant analysis. The most pronounced increase in accumulation due to drought stress was demonstrated for allantoin, l ‐proline, l ‐arginine, l ‐histidine, l ‐isoleucine, and tryptophan. Metabolites that showed a decreased level of accumulation under drought conditions were choline, phenylalanine, gamma‐aminobutyric acid, alanine, phenylalanine, tyrosine, glucosamine, guanine, and aspartic acid. Aminoacyl‐tRNA and plant secondary metabolite biosynthesis and amino acid metabolism or synthesis pathways were involved in producing genetic variation under drought conditions. Metabolic changes in light of drought conditions highlighted pools of metabolites that affect the metabolic and physiological adjustment in chickpea that reduced drought impacts.  相似文献   

5.
干旱胁迫及复水对不同黍稷品种根系生理特性的影响   总被引:3,自引:0,他引:3  
以2种抗旱性不同的黍稷品种(‘陇糜4号’和‘晋黍7号’)为试验材料,采用盆栽试验研究了苗期中度和重度干旱胁迫后拔节期复水对其根系生理特性的影响。结果显示:(1)干旱胁迫引起2个黍稷品种根系活力明显下降,根系SOD、POD活性以及MDA、脯氨酸含量明显升高,而且重度干旱胁迫处理变化幅度显著大于中度干旱胁迫。(2)复水后,2个黍稷品种根系的各项生理指标均有不同程度的恢复,且中度胁迫处理较易恢复,重度胁迫下恢复能力很弱。(3)2个黍稷品种根系各项生理指标在干旱胁迫及复水条件下变化幅度不同,干旱胁迫下抗旱性强的‘陇糜4号’根系活力下降幅度明显低于抗旱性弱的‘晋黍7号’,根系SOD活性、POD活性、MDA含量和脯氨酸含量的上升幅度明显高于‘晋黍7号’,而复水后‘陇糜4号’根系的各项生理指标的恢复能力明显强于‘晋黍7号’。研究表明,干旱胁迫及复水条件下‘陇糜4号’均表现出较高的根系活力、保护酶活性和脯氨酸含量,且MDA含量较低,从而表现出较强的抗旱性。  相似文献   

6.
Root sugar accumulation was studied in two grapevine varieties contrasting in tolerance to water stress. During a 10‐day water withholding treatment, the drought‐tolerant variety, Grenache, sustained less negative predawn and midday leaf water potentials as well as root water potential compared with the sensitive variety, Semillon. Grenache vines also maintained lower stomatal conductance and transpiration than Semillon vines throughout the drying period. In both varieties there was accumulation of sucrose in the roots and concentrations were inversely correlated to leaf and root water status. In both Grenache and Semillon, elevated root osmolality was associated with decreased soil moisture indicating that sugar accumulation may play a role in osmotic protection. Petiole xylem sap abscisic acid (ABA) concentrations increased with water deficit in both varieties and were highest for vines with the most negative root and predawn leaf water potentials. Furthermore, root sucrose concentrations were positively correlated with leaf xylem sap ABA concentrations, indicative of integration between carbohydrate metabolism and the ABA signalling system. Similar root sugar accumulation patterns between the two varieties, however, demonstrate that other factors are likely influencing the ability of the drought‐tolerant variety to remain hydrated.  相似文献   

7.
8.
The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.  相似文献   

9.
This study was undertaken to investigate oxidative stress tolerant mechanisms in chilli (Capsicum annuum L.) under drought genotypes through evaluating morphological, physiological, biochemical and stomatal parameters. Twenty genotypes were evaluated for their genetic potential to drought stress tolerant at seedling stage. Thirty days old seedlings were exposed to drought stress induced by stop watering for the following 10 days and rewatering for the following one week as recovery. Based on their survival performance, two tolerant genotypes viz. BD-10906 and BD-109012 and two susceptible genotypes viz. BD-10902 and RT-20 were selected for studying the oxidative stress tolerance mechanism. Drought reduced root and shoot length, dry weight, ratio, petiole weight and leaf area in both tolerant and susceptible genotypes, and a higher reduction was observed in susceptible genotypes. Lower reduction of leaf area and photosynthetic pigments were also found in tolerant genotypes. Moreover, tolerant genotypes showed higher recovery than susceptible genotypes after the removal of stress. A higher reduction of relative water content (RWC) may cause an imbalance between absorbed and transpirated water in susceptible genotypes. Higher accumulation of proline in tolerant genotypes might be helpful to for better osmotic maintenance than that in susceptible genotypes. Tolerant genotypes showed higher antioxidant activity as they showed DPPH radical scavenging percentage than the susceptible genotypes. Moreover, closer stomata in tolerant genotypes than susceptible ones helped to avoid dehydration in tolerant genotypes. Thus, the above morphological, physiological, biochemical and stomatal parameters helped to show better tolerance in chilli under drought stress.  相似文献   

10.
Five varieties of Sorghum bicolor (L.) Moench., differing in their drought tolerance under field conditions have been used to study the effect of individual components of drought stress, namely high light intensity stress, heat stress and water stress, on their photosynthetic performance. Chlorophyll content, chlorophyll fluorescence, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) content, phosphoenolpyruvate carboxylase (PEPcase, EC 4.1.1.31) activity and photo-synthetic oxygen evolution were used as key parameters to assess photosynthetic performance. The results indicated that photochemical efficiency of photosystem II (PSII) was severely reduced by all three stress components, whereas PEPcase activity was more specifically reduced by water stress. Degradation of Rubisco and chlorophyll loss occurred under high light and water stress conditions. Of the four drought-tolerant varieties, E 36-1 showed higher PEPcase activity, Rubisco content and photochemical efficiency of PSII, and was able to sustain a higher maximal rate of photosynthetic oxygen evolution under each stress condition as compared to the other varieties. A high stability to stress-induced damage, or acclimation of photosynthesis to the individual components of drought stress may contribute to the high yields of E 36-1 under drought conditions. In the E 36-1 variety markedly higher levels of the chloroplastic chaperonin 60 (cpn 60) were observed under all stress conditions than in the susceptible variety CSV 5.Key words: Chlorophyll fluorescence, drought stress, oxygen evolution, phosphoenopyruvate carboxylase, Sorghum.   相似文献   

11.
抗旱性不同的小麦幼苗对水分和NaCl胁迫的反应   总被引:20,自引:8,他引:12  
分别测定抗旱小麦的8139(Triticum aestivum L.cv.8139)和干旱敏感品种甘麦8号(T.aestivum L.cv.Ganmai No.8)在20%PEG6000和1.2%NaCl胁迫下的生长、光合作用、蒸腾作用及抗氧化保护系统的变化。结果表明,抗旱小麦8139对PEG6000有较强的抗性,但对NaCl胁迫的抗性较差。NaCl胁迫下,两种小麦根的生长均受到严重抑制,而在PE  相似文献   

12.
冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的尖   总被引:19,自引:4,他引:15  
研究了土壤缓慢干旱胁迫下抗旱性不同的2个冬小麦品种旗叶老过程中氧化丰以及酶促与硕果发现,在抗旱性强的品种中,冬泪科叶片旱个衰老与膜脂过氧化程度之间并无直接的联系。超氧化物歧化酶(SOD)活性在不同抗旱性品种中均呈现持志下降的趋势,但在生强的品种中下降幅度较小,过氧化氢酶(CAT)活性在胁迫初期基本不变,至中后期明显下降,且在抗旱性弱的品种中下降幅度较大,抗坏血酸过氧化物酶(AP)和谷胱甘肽还原酶(  相似文献   

13.
栽培稻旱胁迫叶片相关性状的遗传解析   总被引:3,自引:0,他引:3  
利用籼稻窄叶青8号(ZYQ8)和粳稻京系17(JX17)衍生的加倍单倍体(DH)群体127个株系,2002年在杭州采用田间断水法栽培,在水分胁迫下,对叶片的卷叶、相对含水量和电导率3个性状进行了评价和QTL分析。结果表明,3个性状在DH群体中均存在双向超亲分离,接近正态分布,受数量性状基因的控制;检测到影响这些性状的6个QTL,其中卷叶3个(qLR—1,qLR—5和qLR—11)、相对含水量2个(qRWC—1和qRWC—6和电导率1个(qERC—6)。旱胁迫时,目测卷叶方便易行,适于对大批品种或资源筛选,对抗旱栽培稻品种的筛选和利用具有一定的指导意义。  相似文献   

14.
Seedlings of sorghum varieties (M35-1, a drought tolerant species; SPV-839, a drought sensitive one) differing in their drought tolerance were subjected to 150 mM NaCl stress for a short duration of time (up to 72 h). Both the varieties failed to exhibit efficient ion exclusion mechanism like that of salt tolerant species, but in turn resulted in higher accumulation of Na+ and Cl ions over a period of 72 h salt stress. In addition, accumulation of calcium, potassium and proline in seedlings of sorghum varieties was moderate to short-term NaCl stress. The modulation of antioxidant components significantly diverged between the two varieties during seed germination, further the efficiency of antioxidant scavenging system is maintained during short-term NaCl treatments. In comparison to tolerant variety, the sensitive variety depicted higher SOD activity under control and salinity treatments but specific activity of catalase was significantly reduced. In contrast, drought tolerant variety exhibited efficient hydrogen peroxide scavenging mechanisms with higher catalase and GST activities under control and salt stress conditions, but not in the sensitive one. In conclusion, our comparative studies indicate that drought tolerant and susceptible varieties of sorghum induce efficient differential oxidative components of enzymatic machinery for scavenging ROS thereby alleviating the oxidative stress generated by salt stress during seedling growth.  相似文献   

15.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响   总被引:21,自引:0,他引:21  
以3个不同耐旱性的菜苔(Brassica parachinensis L.H.Bailey)品种为试材,研究了干旱胁迫对叶片保护酶活性和膜脂过氧化的影响及其与抗旱性的关系。干旱胁迫条件下,菜苔叶片的电解质外渗率和MDA含量呈上升趋势,叶绿素含量、抗坏血酸含量和SOD活性呈下降趋势,CAT活性表现为先上升后下降。耐旱品种比不耐旱品种具有较高的叶绿素含量和抗坏血酸含量,具有较低的电解质外渗率和MDA含量;耐旱品种的SOD活性比不耐旱品种下降幅度小。轻度干旱胁迫下,耐旱品种的CAT活性上升幅度比不耐旱品种高;重度干旱胁迫下耐旱品种的CAT活性下降程度比不耐旱品种低。耐旱品种的POD活性在干旱条件下先上升而后降低,不耐品种的POD活性处于下降趋势。干旱6d后,耐旱品种的SOD、CAT和POD活性显著高于不耐旱品种。  相似文献   

17.
Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root‐systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat‐waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi‐arid regions.  相似文献   

18.
Homobrassinolide (BR) was applied either as a seed treatment or foliar spray to two contrasting wheat varieties, viz. C306 (drought tolerant) and HD2329 (drought susceptible), to examine its effects on plant metabolism and grain yield under irrigated and moisture-stress/rainfed conditions. BR application resulted in increased relative water content, nitrate reductase activity, chlorophyll content and photosynthesis under both conditions. BR application also improved membrane stability (lower injury). These beneficial effects resulted in higher leaf area, biomass production, grain yield and yield related parameters in the treated plants. All the treatments were significantly better than the untreated control. Generally, 0.05 ppm either as a seed treatment or foliar spray was more effective than the 0.01 ppm treatment. The drought-tolerant genotype C306 showed more response to BR application under moisture-stress/rainfed condition than HD 2329. Increased water uptake, membrane stability and higher carbon dioxide and nitrogen assimilation rates under stress seemed to be related to homobrassinolide-induced drought tolerance.  相似文献   

19.
Four wheat varieties differing in their drought tolerance were subjected to severe but recoverable water stress at seedling stage. Growth parameters, leaf water deficit (WD) and electrolyte leakage (EL) were used to evaluate the stress intensity and the extent of recovery. The physiological response of the varieties was quite similar under severe drought. Leaf protein patterns and levels of some individual proteins relevant to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) maintenance were studied in control, stressed and recovering plants by electrophoresis and immunoblotting. The bands representing Rubisco large subunit (RLS), N- and C-terminus of RLS, Rubisco activase (RA) and Rubisco binding protein (RBP, cpn 60), as well as the chaperone and proteolytic subunits of the Clp protease complex were identified using polyclonal antibodies. Under drought conditions RLS, Clp proteases and especially RBP were enhanced, whereas the RA band was only slightly affected. The drought tolerant varieties had higher RBP content in the controls and drought treated plants. Its concentration could be a potential marker for drought tolerance.  相似文献   

20.
初征  郭建平 《应用生态学报》2018,29(6):1885-1892
为探求东北玉米未来如何更好地适应气候变化,本研究采用抗逆品种和推迟播种期两种适应措施,结合区域气候模式模拟的2010-2099年间RCP4.5、RCP8.5两种浓度路径逐日气象资料,分析了不同气候变化情景下东北玉米适应措施的生产潜力变化.结果表明: 2010-2099年间,东北区玉米气候生产潜力的空间分布特征基本为东南向西北减小的趋势,RCP4.5情景下东北玉米生产潜力高于RCP8.5情景,且RCP8.5情景出现极低值年份明显多于RCP4.5情景.所有抗逆品种的玉米生产潜力均高于原有品种,在RCP4.5情景下,耐高温品种的玉米生产潜力更高,在RCP8.5情景下,耐旱品种表现更好,双耐(耐高温、耐旱)品种的玉米生产潜力在2种气候变化情景下均最高.RCP4.5情景下,推迟播种均出现增产情况,其中,推迟30~40 d播种的玉米增产率达到最大;RCP8.5情景下,部分地区出现减产情况.说明适当推迟播种期有利于提高玉米气候生产潜力,但地区间存在差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号