首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

2.
We have developed an improved Agrobacterium-mediated transformation and rapid regeneration system for four cultivars (‘CO(Ra)-14’, ‘PR-202’, ‘Try-1’ and ‘Paiyur-2’) of finger millet using optimized transformation and direct plant regeneration conditions. The shoot apical meristems (SAMs) were used as explants in this study. Agrobacterium strain EHA105 carrying binary vector pCAMBIA1301 was used to optimize the transformation conditions. Concentration of hygromycin, the optical density of the culture, infection time, age of the explants, co-cultivation period, the concentrations of acetosyringone and antibiotics were optimized to improve the transformation frequency. The highest frequency of mean transient gus expression (85.1%) was achieved in cultivar ‘CO(Ra)-14’. The entire transformation procedure, from initiating SAMs to planting putative transgenic plantlets in the greenhouse, was completed within 45 days with the highest stable transformation frequency of 11.8% for ‘CO(Ra)-14’. PCR, gus staining and Southern blot analyses were performed in T0 and T1 generations to confirm the gene integration. Six events from T0 had a single copy of the transgene and showed a normal Mendelian pattern of segregation. To our knowledge, this is the first report on the high frequency transformation of finger millet by Agrobacterium and subsequent recovery of transgenic plants via direct plant regeneration without a callus phase, in short duration (45 days). The proposed protocol could be supportive in breaking through the bottleneck in transformation and regeneration of finger millet cultivars.  相似文献   

3.
Songnen meadow grassland is a typical saline-alkaline land majorly comprised of carbonate soil. Salix mongolica, a woody species with high adaptability to carbonate soil, is an important supplementary feed in the grassland. Therefore, it is necessary to cultivate new varieties of S. mongolica by using genetic engineering methods to reveal the functions of the plant’s related genes and to construct a plant regeneration and genetic transformation system. In this study, we used leaves of S. mongolica as the explants for induction of leaf-based callus, differentiation of adventitious buds and rooting of adventitious by adding different ratios of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzyl aminopurine and naphthaleneacetic acid into the Murashige and Skoog medium. Under the screening conditions of 7.5 mg L?1 hygromycin B and transformation period of 2–5 min using a specific Agrobacterium containing pCXSN-gus plasmids infection concentration (ODλ600?=?0.5), we obtained transgenic strains. PCR detected exogenous gus gene integrated into the chromosome of S. mongolica, Southern blot analysed the T0 transgenic strains single copy inserted into the chromosome, Northern hybridization signals indicated that gus gene mRNA was expressed in the five contemporary transgenic strains. The infected callus, adventitious buds, and regenerated plants displayed a blue color through detection by GUS staining, which reflected the activity of ß-glucuronidase enzyme. This result demonstrated the successful establishment of an Agrobacterium-mediated genetic transformation system from the callus (S. mongolica leaf as a transformation receptor).  相似文献   

4.
We performedAgrobacterium-mediated genetic transformation of creeping bentgrass(Agrostis stolonifera L.) and produced herbicide-resistant transformants from commercial cultivars Crenshaw and Penncross. Seed-derived embryogenie calli were infected withA. tumefaciens EHA105 harboring pCAMBIA 3301, which includes an intron-containinggus reporter and abar selection marker. To establish a stable system, we examined various factors that could potentially influence transformation efficiency during the pre-culture, infection, and co-cultivation steps. The addition of kinetin to the callus pre-culture media increased efficiency about three-fold. Once the optimum infection and co-cultivation conditions were identified, this protocol was used successfully to bulk-produce herbicide-resistant transgenic plants whose herbicide resistance was confirmed using the BASTA® resistance test. Southern blot analysis demonstrated integration and low copy numbers of the integrated transgenes, and northern blot analysis verified their expression. Thus, we have established an efficient genetic transformation system for creeping bentgrass and confirmed a high frequency of single-copy transgene integration and functional gene expression.  相似文献   

5.
Genetic engineering provides new opportunities for improving economically important traits in sugarcane cultivars. In this study, an efficient Agrobacterium-mediated transformation system that uses the bar gene (a herbicide resistance gene that is used in conjunction with the herbicide Basta) as a selection marker was developed. Using this transformation selection system, all of the resistant plants after selection were nearly 100% polymerase chain reaction (PCR) detection positive and showed herbicide resistance. Each gram of sugarcane calli used for transformation produced approximately 12 transgenic lines. It took approximately 4 months to generate transgenic plants that measured 10 cm in height for greenhouse transplantation.  相似文献   

6.
Transformation of commercially important indica cultivars remains challenging for the scientific community even though Agrobacterium-mediated transformation protocols for a few indica rice lines have been well established. We report successful transformation of a commercially important restorer line JK1044R of indica rice hybrid JKRH 401. While following existing protocol, we optimized several parameters for callusing, regeneration and genetic transformation of JK1044R. Calli generated from the rice scutellum tissue were used for transformation by Agrobacterium harboring pCAMBIA2201. A novel two tire selection scheme comprising of Geneticin (G418) and Paramomycin were deployed for selection of transgenic calli as well as regenerated plantlets that expressed neomycin phosphotransferase-II gene encoded by the vector. One specific combination of G418 (30 mg l?1) and Paramomycin (70 mg l?1) was very effective for calli selection. Transformed and selected calli were detected by monitoring the expression of the reporter gene uidA (GUS). Regenerated plantlets were confirmed through PCR analysis of nptII and gus genes specific primers as well as dot blot using gus gene specific as probe.  相似文献   

7.
8.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

9.
After analyzing tomato plants transformed with GalUR gene for their ascorbic acid contents, it was found that some transgenic lines contained higher levels of ascorbic acid compared to control plants. In the present study, callus induction rate was 50.2 % in the explant and shoot regeneration rate was 51.5 % from the callus with transformation efficiency of 3.0 %. Based on PCR and Southern blot analysis, three independent transformants containing the insert gene were selected. Phenotypic traits of these transgenic progeny were similar to those of control tomatoes. Tomatoes (H15) with high fruit ascorbic acid contents were selected for next generation (GalUR T3) analysis. Transgenic tomatoes with increased ascorbic acid contents were found to be more tolerant to abiotic stresses induced by viologen, NaCl, or mannitol than non-transformed plants. In leaf disc senescence assay, the tolerance of these transgenic plants was better than control plants because they could retain higher chlorophyll contents. Under salt stress of less than 200 mM NaCl, these transgenic plants survived. However, control plants were unable to survive such high salt stress. Ascorbic acid contents in the transgenic plants were inversely correlated with MDA contents, especially under salt stress conditions. The GalUR gene was expressed in H15 tomatoes, but not in control plants. Higher expression levels of antioxidant genes (APX and CAT) were also found in these transgenic plants compared to that in the control plants. However, no detectable difference in SOD expression was found between transgenic plants and control plants. Results from this study suggest that the increase in ascorbic acid contents in plants could up-regulate the antioxidant system to enhance the tolerance of transgenic tomato plants to various abiotic stresses.  相似文献   

10.
11.
12.
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation.  相似文献   

13.
14.
This study was to determine a transformation system for Miscanthus sinensis, and to optimize factors and conditions required for expression of an antisense caffeic acid O-methyltransferase gene in the M. sinensis (MsCOMT-AS). Transformation of callus derived from seeds and immature inflorescences of M. sinensis was established by using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pMBP1. In order to establish the stable transformation system, several transformation factors such as explant type, strain, co-culture periods, acetosyringone concentration, and selective markers were assessed. In this study, seven putative transgenic plants were obtained from callus transformation and plantlet regeneration. Various tests including PCR analysis and RT-PCR were used to detect the transgenic insert. The transgenic plants were also characterized for their agronomic and morphological characteristics, expression of MsCOMT-AS gene, and variation in lignocellulosic content. Biomass related traits such as plant height, number of leaves, length of leaf, stem diameter, fresh weight, dry weight, and cell size of the control plants were superior to transgenic plants. Total lignin content of transgenic plants was lower than that of the control plant due to reduced caffeic acid O-methyltransferase (COMT) gene expression related to lignin production. Cellulose and hemicellulose content in transgenic plants were not increased. Variation in cellulose and hemicellulose content had no correlation with variation in lignin content of transgenic plants. In conclusion, transgenic M. sinensis was obtained with down-regulated COMT gene. Lignin synthesis was decreased what offers possibility of crop modification for facilitated biofuel production.  相似文献   

15.
16.
Tomato (Solanum lycopersicum) is a model crop plant for the study of fruit ripening and disease resistance. Here we present a systemic study on in planta transformation of tomato with Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA1303 binary vector bearing HPTII as a plant selectable marker and mGFP/GUS fusion as the reporter gene. We attempted the transformation of tomato at different developmental stages viz. during seed germination, seedling growth, and floral bud development. The imbibition of seeds with Agrobacterium suspension led to seed mortality. The vacuum infiltration of seedlings with Agrobacterium suspension led to sterility in surviving plants. Successful transformation could be achieved either by dipping of developing floral buds in the Agrobacterium suspension or by injecting Agrobacterium into the floral buds. Most floral buds subjected to dip as well as to injection either aborted or had arrested development. The pollination of surviving floral buds with pollen from wild-type plants yielded fruits bearing seeds. A transformation efficiency of 0.25–0.50% was obtained on floral dips/floral injections. Transgenic plants were selected by screening seedlings for hygromycin resistance. The presence of the transgene in genomic DNA was confirmed by Southern blot analysis and expression of the reporter gene up to the T4 generation. The amenability of tomato for in planta transformation simplifies the generation of transgenic tomato plants obviating intervening tissue culture.  相似文献   

17.
Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. ‘W. Murcott’ mandarin (a hybrid of ‘Murcott’ and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of ‘W. Murcott’ mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of ‘W. Murcott’ mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3–5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic ‘W. Murcott’ mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.  相似文献   

18.
Genetic engineering can be used to introduce economically important traits in sugarcane cultivars. Part of any transformation process involves the selection of genetically transformed cells. In this study, an efficient sugarcane in vitro selection system was developed using mutated protophorhyrinogen oxidase (PPO) genes as selectable markers. Two PPO genes, that encode proteins targeted either to the mitochondria or plastid, were isolated from tobacco and maize. Site-directed mutagenesis was used to alter the nucleotide sequence of these genes so that the resulting proteins are less sensitive to diphenylether type herbicides. Sugarcane callus was genetically transformed through particle bombardment with constructs allowing expression of either transgene, and putative transgenic calli were selected on fomesafen. It took approximately 4 weeks to select herbicide resistant calli clones on 10 mg/l fomesafen in the presence of light, which increased the selection pressure, and a further 8 weeks to regenerate resistant plantlets. PCR analysis confirmed that all regenerated putative transgenic sugarcane plants contained the transgene. All transgenic plants showed levels of herbicide resistance when planted in soil.  相似文献   

19.
Identification and characterization of plant promoters from wild rice genotypes showing inducible expression under soil water stress (SWS) is desirable for transgene expression to generate stress tolerant rice cultivars. A comparative expression profiling of Wsi18, a group 3 LEA gene, revealed differential response under SWS conditions between modern cultivated rice (IR20) and its wild progenitor (Oryza nivara). Wsi18 promoter from O. nivara showed enhanced inducible expression of the reporter gusA gene, encoding β-glucuronidase, in transgenic rice plants in comparison to similar promoter from IR20. Deletion analysis unravelled the cis-acting regulatory elements minimally required for optimal expression of Wsi18 promoter from O. nivara under SWS condition. This is the first report of characterization of an inducible promoter from a wild rice genotype to drive the gene expression under water stress conditions. The Wsi18 promoter element from the wild rice genotype can be used in future genetic manipulation strategies for the generation of SWS tolerant rice cultivars with improved yield characteristics.  相似文献   

20.
Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号