首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).  相似文献   

2.
The aim of this study was to investigate whether presoaking with hemin, an inducer of heme oxygenase-1 (HO-1), could alleviate salinity damage during wheat seed germination in comparison with the pretreatment of a well-known nitric oxide (NO) donor sodium nitroprusside (SNP). The results showed that, compared with the samples upon 150 mM NaCl salt stress alone, both 10 ??M hemin and 200 ??M SNP pretreatments could (1) significantly attenuate the inhibition of seed germination and thereafter seedling growth; (2) induce HO expression; (3) enhance amylase activity, thus accelerating the formation of reducing sugar and total soluble sugar; and (4) increase the potassium (K) to sodium (Na) ratio, particularly in the shoot parts. Hemin and SNP could also increase antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and ascorbate peroxidase (APX), thus resulting in the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) content. Moreover, semi-quantitative RT-PCR and isozymatic analysis illustrated that hemin and SNP pretreatment were able to up-regulate the expression of Mn-SOD (especially) and Cu/Zn-SOD gene, and activate SOD isozymatic activities. Since the addition of the NO scavenger methylene blue (MB) differentially reversed the above effects, the protective roles of hemin might be related to the induction of endogenous NO signal. Meanwhile, hemin-driven NO production was confirmed. Together, these results indicated that hemin exerted an advantageous effect on enhancing salinity tolerance during wheat seed germination, which might interact with NO.  相似文献   

3.
Occurrence of salt stress with the soil borne fungus Fusarium oxysporum f. sp. cepa (FOC) are potential threat to the crop yield. This investigation reports effect of the concurrent stresses (salinity and FOC) on morpho-physiological and yield attributes in onion. In vitro growth tests revealed proliferation of FOC biomass at different levels of salinity (2–8 dS m?1). A greenhouse pot experiment with the proposed levels of salinity (2.5, 3.5 and 4.5 dS m?1) in combination with FOC inoculation showed more drastic effect of combined stress on disease severity, plant growth and bulb as compared to the individual stress. In general, osmotic potential, total chlorophyll content, membrane stability index and total protein content of the leaf were decreased, while total phenolics were increased due to the given stress/s. Total sugar content decreased due to effect of the  individual stress of FOC, while it increased under the individual stress of salinity and in combination with FOC. FOC infection did not change activity of polyphenol oxidase (PPO), while it improved peroxidase (POX) and phenylalanine ammonia lyase (PAL) and decreased catalase (CAT) activity. Activities of POX and PPO increased, however PAL and CAT declined under individual as well as simultaneous stress of salinity ?and ?FOC. The research work concluded that FOC will be a more severe disease threat for onion cultivation in saline soils.  相似文献   

4.
Drought stress is a major threat to plant production in semi-arid and arid areas of the world. This research was laid out to asses the effects of sodium nitroprusside (SNP) as a nitric oxide donor on growth, physiological and biochemical changes of in vitro-cultured Allium hirtifolium under polyethylene glycol (PEG) induced drought stress. Basal plate explants of A. hirtifolium were cultured on MS medium containing different levels of PEG (0, 2, 4, 8 and 16 mM) and SNP (0, 10, 40 and 70 µM). After prolonged drought, growth responses, oxidative stress indicators, and phytochemical variations of regenerated plantlets with or without PEG and/or SNP treatments were recorded. Water limitation reduced regeneration potential of explants and consequently number of shoots per explant. Relative water content, total chlorophyll and carotenoid contents of regenerated A. hirtifolium plantlets decreased, but accumulation of malondialdehyde, H2O2 and proline and the activities of superoxide dismutase, ascorbate peroxidase, catalase and peroxidase enzymes increased with decreasing water availability. Total phenol and allicin contents were also increased in response to drought stress. Exogenous SNP in 10 and particularly in 40 µM was effective in enhancing regeneration rate and relative water content as well as protecting photosynthetic pigments under different levels of water availability. SNP also inhibited the hydrogen peroxide (H2O2) accumulation and lipid peroxidation in cell membranes via increasing the activities of superoxide dismutase and ascorbate peroxidase enzymes and accumulating proline and allicin. In general, these results suggest that exogenous SNP at 40 µM not only could somewhat protect A. hirtifolium from drought stress, but also can help to improve the propagation and allicin production of that plant under in vitro condition.  相似文献   

5.
Carthamus tinctorius L., rich in antioxidant compounds, is a herbal medicine. Biochemical mechanisms of adaptation to salinity stress in safflower are still poorly understood at the cellular level. For this purpose, callus cultures of four different genotypes of safflower were used in this study to evaluate changes in their biochemical (ionic content, proline, and glycine betaine), total phenolics content (TPC), total flavonoids content (TFD), antioxidant responses (2,2-diphenyl-1-picrylhydrazyl: DPPH assay and carotenoid content), and lipid peroxidation (malon dialdehyde content: MDA) under salinity stress. The calluses derived from hypocotyls were exposed to in vitro salt stress at different concentrations of sodium chloride (0, 100, 200, and 300 mM). A reducing trend was observed in K+ and carotenoid reserves of the calluses with increasing NaCl concentration while an increasing trend was observed in Na+ content, proline, MDA, TPC, TFD, and DPPH activity under the same conditions. Callus glycine betaine content was found to decrease in the medium containing 100 mM NaCl but increased beyond this concentration up to 300 mM NaCl. Positive and significant correlations were recognized between DPPH and total phenolics as well as DPPH and total flavonoid contents, demonstrating that phenolics are the main contributors to the potential antioxidant activity of safflower at the cellular level. Overall, the salt-tolerant genotypes of Mex.2-137 and Mex.2-138 were found capable of being processed for the production of secondary metabolites via NaCl elicitation.  相似文献   

6.
混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响   总被引:6,自引:0,他引:6  
为研究青山杨(Populus pseudo-cathayana × P. deltoides)对盐碱的适应能力,对青山杨2年生扦插苗进行不同盐度和碱度的28组胁迫处理.结果表明:随盐浓度增加,青山杨叶片的电解质外渗率、丙二醛和脯氨酸含量呈上升趋势,可溶性糖、SOD和POD活性先升后降.pH值升高使电解质外渗率、丙二醛和POD活性呈上升趋势,脯氨酸和可溶性糖含量先升后降,SOD活性上升趋势不明显.盐浓度低于100 mmol·L-1时,随pH值升高,各项生理指标的变化不明显,SOD具有较高的活性;盐浓度在200 mmol·L-1、pH 8.99以上时,其电解质外渗率在50%以上,POD活性和丙二醛含量大幅度增加,脯氨酸和可溶性糖含量下降,SOD活性较低.推断盐浓度>200 mmol·L-1、pH>8.99的盐碱条件不适宜青山杨的生长.  相似文献   

7.
Feverfew (Tanacetum parthenium) (TP) is a valuable medicinal plant from Asteraceae family with various pharmaceutical and therapeutic properties. A pot experiment was conducted to evaluate the effect of salicylic acid (SA) on the physiological and morphological responses of TP under salinity stress. Salinity was induced by NaCl and CaCl2 (2:1) at 30, 60, 90, 120, 150 and 180 mM levels. SA was applied as foliar application at 0, 200 and 300 ppm concentrations. Plant height, leaf and shoot number, fresh and dry weight and essential oil, starch, sugar, protein, proline, catalase (CAT), peroxidase (POD), and ascorbic peroxidase (APX) contents were as measured morpho-physiological traits. The results showed that SA significantly (P  0.05) improved the measured traits and caused higher tolerance in TP plants under salinity stress. The essential oil content increased with increasing the salinity level up to 90 mM, which was more significant when combined with SA application. All of the measured traits except proline content, antioxidant enzymes, essential oil and sugar decreased at high salinity levels.  相似文献   

8.
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45–50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90–95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47–0.50 g/g), and a final ethanol concentration of 100–110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.  相似文献   

9.
Dioscorea birmanica Prain & Burkill is a Thai medicinal plant, which is often used with other medicinal plants for the treatment of cancers, AIDS, and septicemia diseases. Large numbers of this desirable plant can be produced using the plant tissue culture techniques. The objectives of this study were to investigate techniques of in vitro propagation and to examine the bioactive compounds: diosgenin-3-O-α-l-rhamnopyranosyl (1 → 2)–β-d-glucopyranoside (DBS1) content, total phenolic content, and antioxidant activity of the regenerated shoots compared to those of rhizomes growing in the field. For shoot induction, the highest numbers of shoots (2.8 ± 0.5) and nodes per shoot (5.7 ± 0.8) occurred after the single-nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with 2 mg/l BA (6-benzyladenine) for 4 weeks. Shoot multiplication was achieved on MS medium supplemented with 0.01 % activated charcoal (AC) and 2 mg/l BA in combination with 0.1 mg/l IAA or 0.2 mg/l NAA. The regenerated shoots were rooted on ½ MS medium supplemented with 0.01 % AC, 2 mg/l BA and 4 mg/l NAA for 8 weeks. The survival percentage was 71.88 and small rhizomes developed after transplanting for 4–6 weeks. The quantities of 0.37 ± 0.03 % (w/w) DBS1, 44.24 ± 8.47 mg GAE/g dry extract total phenolic and DPPH radical scavenging assay with EC50 value of 53.67 ± 4.16 µg/ml were determined from the regenerated shoots, while 3.27 ± 0.04 % (w/w) DBS1, 259.67 ± 7.34 mg GAE/g dry extract total phenolic and DPPH radical scavenging assay with EC50 value of 11.42 ± 3.28 µg/ml were found in the mother rhizomes.  相似文献   

10.
11.
A pot experiment was conducted to determine the effects of Glomus mosseae inoculation on growth and some biochemical activities in roots and shoots of pepper (Capsicum annuum L. cv. Zhongjiao 105) plants subjected to four levels of NaCl [0 (control), 25 (low), 50 (medium), and 100 (high) mM] for 30 days, after 30 days of establishment under non-saline conditions. In mycorrhizal (M) plants, root colonization varied from 48 to 16 %. M plants had higher root and shoot dry weight and leaf area compared with non-mycorrhizal (NM) plants. Under salinity stress, M plants accumulated higher amounts of leaf photosynthetic pigments as well as soluble sugar, soluble protein, and total free amino acids in roots and shoots than those of NM plants. In contrast, the accumulation of proline was less intense in M plants than NM plants. Salt stress induced oxidative stress by increasing malondialdehyde (MDA) content; however, the extent of oxidative damage in M plants was less compared with NM plants due to G. mosseae-enhanced activity of superoxide dismutase (SOD) and peroxidase (POD). We concluded that inoculation with G. mosseae improved growth performance and enhanced salt tolerance of pepper plants via improving photosynthetic pigments and the accumulation of organic solutes (except proline), reducing oxidative stress, and enhancing antioxidant activities of the SOD-POD system.  相似文献   

12.
Microbial contamination is a serious problem in temporary immersion systems (TIS) during commercial micropropagation. The use of adequate doses of silver nanoparticles (AgNPs), formulated as Argovit?, is an alternative to reduce the contamination indices and promote development in plants. The aim of this study was to evaluate the antimicrobial and hormetic effects of Argovit on in vitro regeneration of vanilla (Vanilla planifolia) using a TIS. In vitro regenerated shoots were grown in Murashige and Skoog (MS) liquid medium with Argovit at five different concentrations (0, 25, 50, 100 and 200 mg/l) using a temporary immersion bioreactor system (RITA®). At 30 days of culture, contamination percentage was evaluated and shoot regeneration and length were used to determine the hormetic response. Analysis of macro and micronutrient contents was performed. In addition, the effect of Argovit on total phenolic content (TPC), reactive oxygen species (ROS) production, antioxidant capacity (ORAC) and lipid peroxidation (LP-MDA) was determined. Results showed that bacterial contamination was reduced at 50, 100 and 200 mg/l of Argovit. Growth stimulation was observed at 25 and 50 mg/l of Argovit, while significant inhibition was detected at 100 and 200 mg/l of Argovit. Mineral nutrient analysis revealed changes in macro and micronutrient concentrations exerted by Argovit. Moreover, the presence of Argovit induced the production of ROS and increased total phenolic content, antioxidant capacity and lipid peroxidation with a dose-dependent effect. Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNPs-induced hormesis for vanilla. Therefore, the addition of 50 mg/l of Argovit in the culture media had an antimicrobial and hormetic effect. Use of Argovit could be an efficient strategy for commercial micropropagation of vanilla and other species.  相似文献   

13.
The present study describes the plant propagation via indirect organogenesis from in vitro derived leaf and internode explants of Plectranthus bourneae, an endemic plant to south India. Leaf and internodal explants successfully callused on Murashige and Skoog medium (MS) supplemented with different concentrations of auxins [2,4-D (2,4-dichlorophenoxyacetic acid), NAA (α-naphthalene acetic acid), IAA (indole-3 acetic acid), IBA (indole-3-butyric acid) and PIC (Picloram); 0.1–2.0 mg/l] in combination with BA (6-benzyladenine) (0.5 mg/l). Maximum callus induction (98 %) was achieved from leaf explant followed by internodal explant (89 %) at 1.0 mg/l NAA, 0.5 mg/l BA. Leaf derived callus showed better shoot regeneration (29.71 shoots) on MS medium containing 1.0 mg/l KN (kinetin), 0.7 mg/l NAA, and 50 mg/l CH (casein hydrolysate) followed by internodal callus (19.71). A maximum of 19.14 roots/shoot was observed at 1.0 mg/l IBA. The rooted plantlets were successfully hardened and transferred to greenhouse condition with 80 % survival. This system could be utilized for large-scale multiplication of P. bourneae by tissue culture.  相似文献   

14.
采用土壤盆栽试验,设置6个盐度水平(0、500、1000、1500、2000、2500 mg/kg),研究胡萝卜种植过程中盐度对其叶绿素、维生素C、可溶性糖、可溶性蛋白质及硝酸盐含量的影响。结果表明,种植胡萝卜的土壤盐度控制在500 mg/kg,可以提高胡萝卜的品质,减少盐分对土壤的损伤。具体表现为,500 mg/kg盐度处理对胡萝卜叶绿素含量无显著影响,而高盐度使胡萝卜叶绿素总含量降低;500~1000 mg/kg盐度可增加胡萝卜维生素C和可溶性蛋白质含量;可溶性总糖含量以500 mg/kg处理的降低幅度最小,500~2000 mg/kg处理使胡萝卜硝酸盐含量呈降低趋势,但高盐度(2500 mg/kg)则会增加其硝酸盐含量。  相似文献   

15.
Grape softwood cuttings of Khoshnaw cultivar were cultured using tissue-culture methods to study the effect of iron nanoparticles and potassium silicate under salinity conditions during the 2015–2016 growing season. The treatments consisted of salinity stress (0, 50, and 100 mM NaCl), nanoparticles of iron (0, 0.08, and 0.8 ppm), and potassium silicate (0, 1, 2 mM). The results also showed that the application of iron nanoparticles and potassium silicate significantly increased the total protein content and reduced proline, enzymatic antioxidant activity and hydrogen peroxide. Salinity stress reduced membrane stability index while increased malondialdehyde content. Increase of membrane stability index and reduction of malondialdehyde content were obtained for 2 mM potassium silicate and 0.8 ppm iron nanoparticle. Iron and potassium silicate were shown to lower the sodium content and increase the potassium content under salinity-stress conditions. The highest ratio of sodium to potassium was observed in plants under salinity conditions (100 mM) treated with neither iron nanoparticles nor potassium silicate; conversely, the lowest ratio was achieved in plants treated with both 0.8 ppm iron nanoparticles with 1 mM and 2 mM potassium silicate under non-stress conditions. These results indicate that the application of micronutrients in stressful conditions is a suitable method to compensate for the negative effects of salinity stress. Tissue culture in this study was shown to be an economically efficient and applicable technique for producing grape softwood cuttings to be used in experiments.  相似文献   

16.
Conventional multiplication of cherry (Prunus cerasus L.) rootstocks utilizes division, cuttings, and propagation through seed, which are relatively slow and labor intensive and result in genetic variability. Tissue culture, on the other hand, ensures rapid, large-scale, and low-cost production of genetically identical, physiologically uniform, and pathogen-free plants. In the cherry rootstocks CAB-6P, Gisela 6, and MxM 14, sodium nitroprusside (SNP) promoted callus induction, in vitro shoot proliferation, and rooting from leaf explants in a medium containing 17.6 μM benzyladenine and 2.68 μM α-naphthaleneacetic acid. CAB-6P explants treated with 10 μM SNP gave the maximum shoot number (5), whereas 30 μM SNP gave the longest shoots and the greatest shoot induction rate (26.67%). Best rooting was obtained with 50 μM SNP. In Gisela 6 rootstock, the shoot number (10) and shoot length (20.5 mm) were maximal in the control group without plant growth regulators. The shoot induction rate was enhanced (40%) with 40 μM SNP. SNP at 40 μM resulted in root formation, while 30 μM produced the largest callus size, and 10 μM SNP resulted in the maximum callus fresh weight. MxM 14 leaves treated with 30 μM SNP gave the maximum shoot number (3), root number (7.56), and shoot induction rate (40%), whereas 40 μM SNP gave the longest shoots (12 mm) and roots (20 mm). Best results for callus size, callus fresh weight, and callus induction rate (100%) in the CAB-6P and MxM 14 rootstocks were observed with 30 and 40 μM SNP, respectively. Rooted explants with shoots were gradually acclimatized to the external environment with a high survival percentage (85%). An efficient protocol of indirect organogenesis was established for the three cherry rootstocks using SNP.  相似文献   

17.
A greenhouse hydroponic experiment was performed to evaluate how peanut seedlings (Arachis hypogaea L.) responded to iron (Fe) deficiency stress in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. The results showed that Fe deficiency inhibited peanut plant growth, decreased chlorophyll and active Fe concentrations, and dramatically disturbed ion balance. The addition of 50, 100, 250, and 500 µM SNP, significantly promoted the absorption of Fe in the cell wall, cell organelles, and soluble fractions, increased the concentrations of active Fe and chlorophyll in peanut plants, and alleviated the excess absorption of manganese (Mn) and copper (Cu) induced by Fe deficiency. In addition, SNP also significantly increased the activities of superoxide dismutase, peroxidase, and catalase, which is beneficial to inhibit the accumulation of malondialdehyde and reactive oxygen species. Addition of 250 µM SNP had the most significant alleviating effect against Fe-deficiency stress, and after 15 days of treatment, the plants with the 250 µM SNP treatment achieved comparable NO levels with those grown under optimal nutrition conditions. However, the effects of SNP were reversed by addition of hemoglobin (Hb, a NO scavenger). These results suggest that NO released from SNP decomposition was responsible for the effect of SNP-induced alleviation on Fe deficiency.  相似文献   

18.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

19.
The effects of long term salinity on some morpho-physiological characteristics were studied in strawberry Kurdistan and Queen elisa cultivars. Vegetative and biochemical traits were measured in strawberry cultivars subjected to three levels of salinity including 0, 40 and 80 mM at 20, 40 and 60th days after NaCl addition. Results showed that in both cultivars the dry weight of plant organs decreased in response to NaCl, except of crown weight in cv. Kurdistan. Root to shoot ratio increased due to a greater reduction in above ground biomass under salinity. Strawberry cultivars tended to decrease their stomatal conductance, RWC, proline, soluble carbohydrates and proteins during the different evaluation periods. Compared to the 20th day, peroxidase activity decreased at 80 mM during 40 and 60 days in cv. Queen elisa. On the contrary, ascorbate peroxidase activity elevated until the 40th day and decreased afterwards, in addition application of 40 and 80 mM NaCl increased the ascorbate peroxidase activity of both studied cultivars. Catalase activity increased from 20th until 60th days in cv. Queen elisa, while showed increase in cv. Kurdistan until day 40 and then decreased again at day 60. Application of 40 and 80 mM NaCl resulted in an increase in peroxidase, ascorbate peroxidase and catalase activities of both cultivars. The Queen elisa cv. showed lower tolerance index (45.88%) compared with cv. Kurdistan (67.97%). Finally, higher salinity resistance of cv. Kurdistan is probably associated with its ability to maintain higher RWC and higher activity of antioxidant enzymes.  相似文献   

20.
Effects of NaCl on growth in vitro and contents of sugars, free proline and proteins in the seedlings and leaf explants of Nicotiana tabacum cv. Virginia were investigated. The fresh and dry mass of the seedlings decreased under salinity. These growth parameters in leaf explants decreased at 50 mM NaCl and increased up to 150 mM NaCl and then decreased at higher level of salinity. Free proline content in both seedlings and leaf explants increased and polysaccharide content decreased continuously with increasing of NaCl concentration. Reducing sugars, oligosaccharides, soluble sugars and total sugars contents in both seedlings and leaf explants decreased up to 150 mM NaCl and then increased at higher concentrations of NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号