首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The destruction of CD4(+) T cells and eventual induction of immunodeficiency is a hallmark of the human immunodeficiency virus type 1 infection (HIV-1). However, the mechanism of this destruction remains unresolved. Several auxiliary proteins have been proposed to play a role in this aspect of HIV pathogenesis including a 14 kDa protein named viral protein R (Vpr). Vpr has been implicated in the regulation of various cellular functions including apoptosis, cell cycle arrest, differentiation, and immune suppression. However, the mechanism(s) involved in Vpr-mediated apoptosis remains unresolved, and several proposed mechanisms for these effects are under investigation. In this review, we discuss the possibility that some of these proposed pathways might converge to modulate Vpr's behavior. Further, we also discuss caveats and future directions for investigation of the interesting biology of this HIV accessory gene.  相似文献   

2.
Human immunodeficiency virus, type 1 (HIV-1), vpr gene encodes a 14-kDa virion-associated protein, which exhibits significant effects on human cells. One important property of Vpr is its ability to induce apoptosis during infection. Apoptotic induction is likely to play a role in the pathogenesis of AIDS. However, the pathway of apoptosis is not clearly defined. In this report we investigate the mechanism of apoptosis induced by HIV-1 Vpr using a Vpr pseudotype viral infection system or adeno delivery of Vpr in primary human lymphoid cells and T-cells. With either vector, HIV-1 Vpr induced cell cycle arrest at the G(2)/M phase and apoptosis in lymphoid target cells. Furthermore, we observed that with both vectors, caspase 9, but not caspase 8, was activated following infection of human peripheral blood mononuclear cell with either Vpr-positive HIV virions or adeno-delivered Vpr. Activation of the caspase 9 pathway resulted in caspase 3 activation and apoptosis in human primary cells. These effects were coincident with the disruption of the mitochondrial transmembrane potential and induction of cytochrome c release by Vpr. The Vpr-induced signaling pathway did not induce CD95 or CD95L expression. Bcl-2 overexpressing cells succumb to Vpr-induced apoptosis. These studies illustrate that Vpr induces a mitochondria-dependent apoptotic pathway that is distinct from apoptosis driven by the Fas-FasL pathway.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.  相似文献   

5.
The 14-kDa HIV-1 accessory gene vpr has been reported to have effects on host cell biology. These activities include inhibition of cell proliferation, inhibition of NF-kappaB activation, inhibition of CD4 T-cell proliferation, and induction of apoptosis in tissue culture. This collection of activities could, in theory, impact host cell immune responses. We tested the activity of recombinant Vpr protein to inhibit T-cell activation in vitro. Here, we present data illustrating that the Vpr protein can significantly suppress T-cell activation-related cytokine elaboration and proliferation. In vivo, we observed that covaccination with plasmids expressing the vpr gene product profoundly reduces antigen-specific CD8-mediated cytotoxic T lymphocyte (CTL) activity. This supports that vpr might compromise T-cell immunity in vivo during infection. To study this aspect of Vpr biology, we developed an Adenoviral Vpr expression vector for delivery of Vpr to immune cells and to study Vpr function in the absence of other lentiviral gene products. This vector delivers a functional Vpr protein to immune cells including antigen-presenting cells (APCs). We observe that the Adeno-Vpr vector suppresses human CD4 T-cell proliferation driven by immune activation in vitro. Further study of the biology of Vpr will likely have importance for a clearer understanding of host pathogenesis as well as have important implications for HIV vaccine development.  相似文献   

6.
Viruses have developed various strategies to protect infected cells from apoptosis. HIV-1 infected macrophages are long-lived and considered reservoirs for HIV-1. One significant deciding factor between cell survival and cell death is glucose metabolism. We hypothesized that HIV-1 protects infected macrophages from apoptosis in part by modulating the host glycolytic pathway specifically by regulating hexokinase-1 (HK-1) an enzyme that converts glucose to glucose-6-phosphate. Therefore, we analyzed the regulation of HK-1 in HIV-1 infected PBMCs, and in a chronically HIV-1 infected monocyte-like cell line, U1. Our results demonstrate that HIV-1 induces a robust increase in HK-1 expression. Surprisingly, hexokinase enzymatic activity was significantly inhibited in HIV-1 infected PBMCs and in PMA differentiated U1 cells. Interestingly, we observed increased levels of mitochondria-bound HK-1 in PMA induced U1 cells and in the HIV-1 accessory protein, viral protein R (Vpr) transduced U937 cell derived macrophages. Dissociation of HK-1 from mitochondria in U1 cells using a pharmacological agent, clotrimazole (CTZ) induced mitochondrial membrane depolarization and caspase-3/7 mediated apoptosis. Dissociation of HK-1 from mitochondria in Vpr transduced U937 also activated caspase-3/7 activity. These observations indicate that HK-1 plays a non-metabolic role in HIV-1 infected macrophages by binding to mitochondria thereby maintaining mitochondrial integrity. These results suggest that targeting the interaction of HK-1 with the mitochondria to induce apoptosis in persistently infected macrophages may prove beneficial in purging the macrophage HIV reservoir.  相似文献   

7.
8.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

9.
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection.  相似文献   

10.
Human immunodeficiency virus type 1 viral protein R (Vpr) is required for viral pathogenesis and has been implicated in T-cell apoptosis through its activation of caspase 3 and caspase 9 and perturbation of mitochondrial membrane potential. To understand better Vpr-mitochondria interaction, we report here the identification of antiapoptotic mitochondrial protein HAX-1 as a novel Vpr target. We show that Vpr and HAX-1 physically associate with each other. Overexpression of Vpr in cells dislocates HAX-1 from its normal residence in mitochondria and creates mitochondrion instability and cell death. Conversely, overexpression of HAX-1 suppressed the proapoptotic activity of Vpr.  相似文献   

11.
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFα. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.  相似文献   

12.
Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-kappaB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-kappaB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-kappaB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-kappaB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-kappaB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-kappaB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.  相似文献   

13.
Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-κB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-κB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-κB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-κB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-κB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-κB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.  相似文献   

14.
赵建元  丁寄葳  米泽云  周金明  魏涛  岑山 《遗传》2015,37(5):480-486
人免疫缺陷病毒(HIV-1)急性感染过程中,病毒的遗传多样性显著减少,往往只有一株或几株病毒可以建立有效感染,这种病毒被称为初始传播病毒(Transmitted/Founder virus)。病毒蛋白R(Vpr)是HIV-1的辅助蛋白之一,在病毒复制过程中起重要作用。研究初始传播病毒Vpr基因遗传变异与生物学特征对于阐明病毒建立感染的关键环节具有重要意义。文章利用流式细胞术分析了C亚型HIV-1初始传播病毒株与慢性感染株MJ4的 Vpr蛋白诱导细胞G2期阻滞和细胞凋亡的能力。结果显示,初始传播病毒ZM246和ZM247的Vpr诱导细胞G2期阻滞和细胞凋亡的能力显著高于慢性感染株MJ4 Vpr。氨基酸序列分析表明,初始传播病毒Vpr在第77、85和94位上存在高频突变。研究结果提示初始传播病毒可能在病毒感染早期,通过Vpr基因的遗传突变,提升病毒诱导细胞停滞G2期和细胞凋亡的能力,进而促进病毒在宿主体内的复制和传播。  相似文献   

15.
16.
The Vpr protein of HIV-1 functions as a vital accessory gene by regulating various cellular functions, including cell differentiation, apoptosis, nuclear factor of kappaB (NF-kappaB) suppression and cell-cycle arrest of the host cell. Several reports have indicated that Vpr complexes with the glucocorticoid receptor (GR), but it remains unclear whether the GR pathway is required for Vpr to function. Here, we report that Vpr uses the GR pathway as a recruitment vehicle for the NF-kappaB co-activating protein, poly(ADP-ribose) polymerase-1 (PARP-1). The GR interaction with Vpr is both necessary and sufficient to facilitate this interaction by potentiating the formation of a Vpr-GR-PARP-1 complex. The recruitment of PARP-1 by the Vpr-GR complex prevents its nuclear localization, which is necessary for Vpr to suppress NF-kappaB. The association of GR with PARP-1 is not observed with steroid (glucocorticoid) treatment, indicating that the GR association with PARP-1 is a gain of function that is solely attributed to HIV-1 Vpr. These data provide important insights into Vpr biology and its role in HIV pathogenesis.  相似文献   

17.
Vpr, a small HIV auxiliary protein, hijacks the CUL4 ubiquitin ligase through DCAF1 to inactivate an unknown cellular target, leading to cell cycle arrest at the G(2) phase and cell death. Here we first sought to delineate the Vpr determinants involved in the binding to DCAF1 and to the target. On the one hand, the three α-helices of Vpr are necessary and sufficient for binding to DCAF1; on the other hand, nonlinear determinants in Vpr are required for binding to the target, as shown by using protein chimeras. We also underscore that a SRIG motif conserved in the C-terminal tail of Vpr proteins from HIV-1/SIVcpz and HIV-2/SIVsmm lineages is critical for G(2) arrest. Our results suggest that this motif may be predictive of the ability of Vpr proteins from other SIV lineages to mediate G(2) arrest. We took advantage of the characterization of a subset of G(2) arrest-defective, but DCAF1 binding-proficient mutants, to investigate whether Vpr interferes with cell viability independently of its ability to induce G(2) arrest. These mutants inhibited cell colony formation in HeLa cells and are cytotoxic in lymphocytes, unmasking a G(2) arrest-independent cytopathic effect of Vpr. Furthermore these mutants do not block cell cycle progression at the G(1) or S phases but trigger apoptosis through caspase 3. Disruption of DCAF1 binding restored efficiency of colony formation. However, DCAF1 binding per se is not sufficient to confer cytopathicity. These data support a model in which Vpr recruits DCAF1 to induce the degradation of two host proteins independently required for proper cell growth.  相似文献   

18.
19.
Destruction of CD4+ T cells, the hallmark of AIDS, is caused in part by HIV-1-induced apoptosis of both infected cells and noninfected "bystander" cells. The HIV-1 auxiliary regulatory protein Vpr has been shown to harbor a pro-apoptotic activity that may contribute to cellular and tissue damage during AIDS pathogenesis. The biochemical mechanism of this Vpr function remains unclear. In this report, substitutions of a single amino acid residue Leu64 with Pro, Ala, or Arg are shown to dramatically enhance the pro-apoptotic activity of Vpr, as evidenced by the degradation of cellular DNA into fragments of 200-bp increments. Substitutions of Leu64 with conservative residues have no effect. The pro-apoptotic activity of the VprL64P mutant also requires activation of caspase(s) and is inhibited by the secondary mutation I61A, indicating a high specificity for Vpr-induced apoptosis. Among the three HIV-1 subtypes examined, a subtype B Vpr and an A/G subtype recombinant Vpr have a moderate level of pro-apoptotic activity, whereas a subtype D Vpr has no detectable activity. However, the L64P mutation efficiently enhances the pro-apoptotic potential of the subtype B and subtype D Vpr molecules but not that of the A/G recombinant Vpr. It is hypothesized that Vpr molecules from different HIV-1 subtypes as well as Vpr variants that emerge during HIV-1 infection may have different pro-apoptotic potentials and contribute to the diversity of AIDS pathogenesis.  相似文献   

20.
Vpr (viral protein R) is a vital HIV-1 accessory protein with multiple functions in the viral life cycle, including nuclear import of preintegration complex, induction of apoptosis and G2 cell cycle arrest. The cell cycle perturbation activity of Vpr requires activation of the ATR (Ataxia-Telangiectasia and Rad3-related) pathway and the integrity of Vpr C-terminal motif that is crucial for chromatin binding. Recent studies also demonstrated Vpr as one of the viral factors that influence HIV disease progression, as mutations in Vpr were overrepresented in some cohorts of long-term nonprogressors (LTNP). The LTNP-associated mutations of Vpr are frequently observed in the C-terminal domain. This raises the question whether the LTNP phenotype of Vpr is the result of the loss its ability to induce G2 arrest. Here we report that the LTNP-associated mutants of Vpr function normally in the induction of G2 arrest. No defects in ATR activation and direct binding to chromatin are observed. These mutants also show similar levels of apoptosis induction as wild-type Vpr. These data differentiate the LTNP-associated mutations of Vpr with those defective in inducing G2 arrest. We propose that the G2 arrest function of Vpr is separated from the LTNP phenotype, and the role of Vpr in HIV disease progression may involve other functions of Vpr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号