首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductance and capacitance of flowing and quiescent red blood cell (RBC) suspensions were measured at a frequency of 0.2 MHz. The results demonstrate that the time-dependent changes in the conductance recorded during the aggregation process differ in nature for suspensions of short linear rouleaux, branched aggregates and RBC networks. It is shown that the conductance of RBC suspensions measured during the aggregation and disaggregation processes follows the morphological transformations of the RBC aggregates. Thus, this method enables characterization of the morphology of RBC aggregates formed in whole blood and in suspensions with physiological hematocrits both under flow conditions and in stasis. These results in combination with previous ones suggest that this technique can be used for studies of dynamic RBC aggregation and probably for diagnostic use.  相似文献   

2.
A method based on dielectric properties of dispersed systems was developed to investigate red blood cell (RBC) aggregation in blood and RBC suspensions. Measurements of capacitance and resistance were made in a rectangular channel at low (0.2 MHz) and high (14 MHz) frequencies relative to the mid-point of the beta-dispersion range. Compared to capacitance, minimal post-shearing changes of resistance were observed; capacitance changes at 0.2 MHz were two orders of magnitude larger than those at 14 MHz and hence subsequent measurements were carried out at the lower frequency. It is shown that post-shearing changes in the capacitance are affected by the recovery of RBC shape and relaxation processes at the electrode-suspension interface. However, the dominant factor contributing to time-dependent changes in the capacitance is the dynamic process of RBC aggregation. It is experimentally shown that the time record of the capacitance at 0.2 MHz quantitatively reflects the aggregation process in RBC-plasma suspensions with hematocrit up to 0.56 (v/v) and in suspensions of RBCs in artificial aggregating media. It is concluded that a dielectric approach to the study of RBC aggregation in whole blood offers great potential for basic studies and for diagnostic use.  相似文献   

3.
Plasmatic proteins, namely fibrinogen and globulins, play a major role in red blood cell (RBC) aggregation which is accountable for the three-dimensional structure of blood. Consequently, blood rheological properties linked to this structure must be modified when the protein plasma content changes. This paper gives results and related comments on thixotropic properties of RBC suspensions (0.45 hematocrit) in isotonic solutions containing various amount of fibrinogen to which albumin is added. Thixotropic behavior of these RBC suspensions is studied with a low inertia coaxial cylinders viscometer at a shear rate step of Y = 1 s-1. Rheograms are interpreted in term of thixotropy coefficient. The main conclusion is that albumin improves RBC disaggregability of whole blood, resulting probably from a competitive effect between fibrinogen and albumin in the RBC aggregation process.  相似文献   

4.
Infection with the novel severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) and the associated coronavirus disease‐19 (COVID‐19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID‐19 disease process were tested after the acute phase of SARS‐CoV‐2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID‐19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID‐19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID‐19 patients. Higher RBC‐NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation‐disaggregation in COVID‐19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID‐19 disease course.  相似文献   

5.
A common indicator of rheological dysfunction is a measurable decrease in the deformability of red blood cells (RBCs). Decreased RBC deformability is associated with cellular stress or pathology and can impede the transit of these cells through the microvasculature, where RBCs play a central role in the oxygenation of tissues. Therefore, RBC deformability has been recognized as a sensitive biomarker for rheological disease. In the current study, we present a strategy to measure RBC cortical tension as an indicator of RBC deformability based on the critical pressure required for RBC transit through microscale funnel constrictions. By modeling RBCs as a Newtonian liquid drop, we were able to discriminate cells fixed with glutaraldehyde concentrations that vary as little as 0.001%. When RBCs were sampled from healthy donors on different days, the RBC cortical tension was found to be highly reproducible. Inter-individual variability was similarly reproducible, showing only slightly greater variability, which might reflect biological differences between normal individuals. Both the sensitivity and reproducibility of cortical tension, as an indicator of RBC deformability, make it well-suited for biological and clinical analysis of RBC microrheology.  相似文献   

6.
The influence of red blood cell (RBC) aggregation on blood flow in vivo has been under debate since early 1900's, yet a full understanding has still has not been reached. Enhanced RBC aggregation is well known to increase blood viscosity measured in rotational viscometers. However, it has been demonstrated that RBC aggregation may decrease flow resistance in cylindrical tubes, due to the formation of a cell-poor zone near the tube wall which results from the enhanced central accumulation of RBC. There is also extensive discussion regarding the effects of RBC aggregation on in vivo blood flow resistance. Several groups have reported increased microcirculatory flow resistance with enhanced RBC aggregation in experiments that utilized intravital microscopy. Alternatively, whole organ studies revealed that flow resistance may be significantly decreased if RBC aggregation is enhanced. Recently, new techniques have been developed to achieve well-controlled, graded alterations in RBC aggregation without influencing suspending phase properties. Studies using this technique revealed that the effects of RBC aggregation are determined by the degree of aggregation changes, and that this relationship can be explained by different hemodynamic mechanisms.  相似文献   

7.
Prior reports describing the effects of lanthanum (La(3+)) on red blood cells (RBC) have focused on the effects of this lanthanide on cell fusion or on membrane characteristics (e.g., ion movement across membrane, membrane protein aggregation); the present study explores its rheological and biophysical effects. Normal human RBC were exposed to La(3+) levels up to 200 microM then tested for: (1) cellular deformability using a laser-based ektacytometer and an optical-based rheoscope; (2) membrane viscoelastic behavior via micropipettes; (3) surface charge via micro electrophoresis. La(3+) concentrations of 12.5 to 200 microM caused dose-dependent decreases of deformability that were greatest at low stresses: these rheological changes were completely reversible upon removing La(3+) from the media either by washing with La(3+)-free buffer or by suspending La(3+)-exposed cells in La(3+)-free media (i.e., viscous dextran solution). Both membrane shear elastic modulus and membrane surface viscosity were increased by 25-30% at 100 or 200 microM. As expected, La(3+) decreased RBC electrophoretic mobility (EPM), with EPM inversely but not linearly associated with deformability; changes of EPM were also completely reversible. These results thus indicate novel aspects of RBC cellular and membrane rheological behavior yet raise questions regarding specific mechanisms responsible for La(3+)-induced alterations.  相似文献   

8.
In experiments on Wistar male rats, changes are studied of erythrocyte hematological, biochemical (activities of transport ATPases), and rheological properties (capability for aggregation and deformability) 7 days after bloodletting of 12–15% of the total blood mass. It has been shown that alongside with an elevation of erythrocyte volume and of the number of immature cells—reticulocytes, there was a statistically significant increase of Na,K-ATPase and Ca-ATPase activities in the whole erythrocytes and in their membrane preparations—ghosts, the increment of activity in the case of Na,K-ATPase being essentially higher in the whole cells. This indicates the appearance of an enzyme activator inside the erythrocytes. There are also revealed a decrease of firmness of erythrocyte aggregates, a deceleration of spontaneous aggregation, and an increase of index of erythrocyte deformability. The conclusion is made that changes of erythrocyte rheological properties are interconnected with changes of the Na,K-ATPase activity and are aimed at optimization of blood circulation in large vessels and capillary network.  相似文献   

9.
Red blood cell (RBC) aggregation is known to be of deciding influence on erythrocyte sedimentation-rate (ESR) and on whole blood viscoelastic properties. The rheological behaviour of blood collected from a control-group with normal ESR is compared to the viscoelastic behaviour of blood collected from two groups with high to very high ESR, whose individuals are suffering from chronical polyarthritis and Morbus Bechterew, respectively. The rheological properties are evaluated by means of an oscillating-flow capillary-rheometer where the viscous (eta') and elastic (eta") component of the complex viscosity (eta) is measured at a constant frequency of 2 Hz. Correcting for the varying hematocrit of the different blood samples according to an exponential equation, the viscoelastic data are found to be elevated in the groups with high ESR. For the viscous properties this is only due to the increase of the plasma viscosity. A correction for the plasma viscosity, however, shows that the viscous properties at low shear- rates (2s-1) are significantly reduced, whereas elastic properties in a range of medium shear-rates (10s-1 to 50s-1) are significantly increased (P less than 0.001, t-test of Student). This result is discussed to be due to the high packing density of the RBC in fast sedimenting aggregates. High packing density reduces the effective volume of the RBC but increases the stiffness of the aggregates.  相似文献   

10.
M Tomita  F Gotoh  N Tanahashi 《Biorheology》1988,25(1-2):57-64
The whole blood RBC aggregometer head reported previously for measuring the degree of RBC aggregation in whole blood was tested for its usefulness as a flowmeter of blood vessels in situ. Modifications to its construction were made so that it became readily attachable and detachable without damage to the vessels. In ex vivo experiments employing a transparent vinyl tube and freshly drawn heparinized human whole blood, the RBC aggregometer head was applicable for evaluating semiquantitative flow changes within a limited flow range based on the degree of RBC aggregation. A linear relationship was observed between the logarithm of blood flow in a low shear range (below approximately 180/s) and changes in the light transmission of the flowing blood. The RBC aggregometer head with or without an electromagnetic flowmeter (EMF) was applied to the jugular vein and femoral vein in cats. A stop-flow change of whole blood in the jugular vein was detected by the RBC aggregometer head as a dramatic change in light transmission (LT). The aggregometer head recorded a similar LT change consistently, whereas the EMF was found to be rather discrepant, indicating the occurrence of anomalous flow. It is concluded that the RBC aggregometer head can be used as an semiquantitative flowmeter for relative changes in blood flow in veins in situ.  相似文献   

11.
《Biorheology》1997,34(3):235-247
Low-shear viscometry is one of the methods commonly used to estimate the degree of red blood cell (RBC) aggregation in various bloods and RBC suspensions. However, it has been previously shown that alterations in RBC morphology and mechanical behavior can affect the low-shear apparent viscosity of RBC suspensions; RBC aggregation is also sensitive to these cellular factors. This study used heat treatment (48°C, 5 min), glutaraldehyde (0.005–0.02%) and hydrogen peroxide (1 mM) to modify cell geometry and deformability. Red blood cell aggregation was assessed via a Myrenne Aggregometer (“M” and “Ml” indexes), RBC suspension viscosity was measured using a Contraves LS-30 viscometer, and RBC shape response to fluid shear stresses (i.e., deformability) was determined by ektacytometry (LORCA system). Our results indicate that low-shear apparent viscosity and related indexes may not always reflect changes of RBC aggregation if cellular properties are altered: for situations where RBC aggregation has been only moderately affected, cellular mechanical factors may be the major determinant of low-shear viscosity. These findings thus imply that in situations which may be associated alterations of RBC geometry and/or deformability, low-shear viscometry should not be the sole measurement technique used to assess RBC aggregation.  相似文献   

12.
Although the study of red blood cell (RBC) aggregation continues to be of basic science and clinical interest, aggregation standards for calibration do not exist, and most aggregation studies report data in terms of arbitrary units: quantitative comparisons between studies are thus essentially precluded. However, use of low shear viscometry plus the Casson equation provides a yield shear stress that has defined units and is known to reflect RBC aggregation. Employing human RBC-plasma suspensions exhibiting a wide range of aggregation, the present study examined relations between yield shear stress values and aggregation indices obtained using the Myrenne aggregometer: the latter approach uses a light-transmission technique and provides an "M" index at stasis and an "M1" at very low shear. Our results for normal controls and for angina patients without coronary artery disease indicate highly significant correlations (p<0.001) between the yield stress and both M and M1. Thus, within the range of aggregation studied, these findings lend support to the rheological validity of the Myrenne approach; extension of our findings to intensely aggregating RBC suspensions may require additional validation studies.  相似文献   

13.
Red blood cell (RBC) aggregation and blood viscosity are important determinants of in vivo blood flow dynamics and, in marine mammals, these parameters may impact diving physiology by altering blood oxygen delivery during the diving response. Weddell seals are superb divers and exhibit age-related patterns in blood oxygen chemistry and diving ability. By contrast, bowhead whales are not long duration divers, and little is known of their blood properties relative to diving. The present study was designed to compare rheological characteristics of blood from Weddell seal pups, Weddell seal adults, and from adult bowhead whales: blood viscosity and RBC aggregation in plasma and in polymer solutions (i.e., RBC "aggregability") were measured. Salient findings included: (1) significant 4- to 8-fold greater aggregation in blood from adult seals compared with pups and human subjects; (2) 2-to 8-fold greater aggregation in bowhead whale blood compared with human blood; (3) compared to human red cells, enhanced RBC aggregability of RBC from adult seals and whales as determined by their greater aggregation in polymer solutions; (4) increasing RBC aggregation and aggregability of seal pup blood over a seven day period following birth; (5) significantly greater blood viscosity for adult seals compared with pups at both native and standardized hematocrits. These results indicate that, for both species, hemorheological parameters differ markedly from those of humans, and suggest progressive changes with seal age; the physiological implications of these differences have yet to be fully defined.  相似文献   

14.
The reversible aggregation of red blood cells (RBC) into linear and three-dimensional structures continues to be of basic science and clinical interest: RBC aggregation affects low shear blood viscosity and microvascular flow dynamics, and can be markedly enhanced in several clinical states. Until fairly recently, most research efforts were focused on relations between suspending medium composition (i.e., protein levels, polymer type and concentration) and aggregate formation. However, there is now an increasing amount of experimental evidence indicating that RBC cellular properties can markedly affect aggregation, with the term "RBC aggregability" coined to describe the cell's intrinsic tendency to aggregate. Variations of aggregability can be large, with some changes of aggregation substantially greater than those resulting from pathologic states. The present review provides a brief overview of this topic, and includes such areas as donor-to-donor variations, polymer-plasma correlations, effects of RBC age, effects of enzymatic treatment, and current developments related to the mechanisms involved in RBC aggregation.  相似文献   

15.
A method based on dielectric properties of dispersed systems was applied to investigate the kinetics of RBC aggregation and the break-up of the aggregates. Experimentally, this method consists of measuring the capacitance at a frequency in the beginning of the beta-dispersion. Two experimental protocols were used to investigate the aggregation process. In the first case, blood samples were fully dispersed and then the flow was decreased or stopped to promote RBC aggregation. It was found that the initial phases of RBC aggregation are not affected by the shear rate. This finding indicates that RBC aggregation is a slow coagulation process. In the second case, RBCs aggregated under flow conditions at different shear rates and after the capacitance reached plateau levels, the flow was ceased. The steady-state capacitance of the quiescent blood and the kinetics of RBC aggregation after stoppage of shearing depend on the prior shear rate. To clarify the reasons for this effect, the kinetics of the disaggregation process was studied. In these experiments, time courses of the capacitance were recorded under different flow conditions and then a higher shear stress was applied to break up RBC aggregates. It was found that the kinetics of the disaggregation process depend on both the prior and current shear stresses. Results obtained in this study and their analysis show that the kinetics of RBC aggregation in stasis consists of two consecutive phases: At the onset, red blood cells interact face-to-face to form linear aggregates and then, after an accumulation of an appropriate concentration of these aggregates, branched rouleaux are formed via reactions of ends of the linear rouleaux with sides of other rouleaux (face-to-side interactions). Branching points are broken by low shear stresses whereas dispersion of the linear rouleaux requires significantly higher energy.  相似文献   

16.
The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biologic and biophysical interest, yet the mechanistic details governing the process are still being explored. Although a depletion model with osmotic attractive forces due to polymer depletion near the RBC surface has been proposed for aggregation by the neutral polyglucose dextran, its applicability at high molecular mass has not been established. In this study, RBC aggregation was measured over a wide range of dextran molecular mass (70 kDa to 28 MDa) at concentrations ≤2 g/dL. Our results indicate that aggregation does not monotonically increase with polymer size; instead, it demonstrates an optimum dextran molecular mass around 200-500 kDa. We used a model for depletion-mediated RBC aggregation to calculate the expected depletion energies. This model was found to be consistent with the experimental results and thus provides new insight into polymer-RBC interactions.  相似文献   

17.
A Chabanel  M Samama 《Biorheology》1989,26(4):785-797
Reversible aggregation of red blood cells (RBC) plays an important role in determining the flow properties of blood. To study different factors affecting RBC aggregation we used a new commercially available erythro-aggregameter (SEFAM, Nancy, France). The method allows the photometric quantitation of the kinetics of RBC aggregation and the estimation of the shear resistance of the aggregates. Modification of the hematocrit acts mostly on the determination of the disaggregation shear rate, while plasma composition strongly affects all measurements. Anticoagulants per se do no influence the aggregation process, but can alter the value of the parameters through a plasma dilution effect. Presence of white blood cells and platelets in the sample did not modify the data. Study on the effects of low concentration of heparin and low molecular weight heparin showed that at therapeutical doses these drugs did not alter the values of the aggregation parameters. Provided that precise guidelines are followed for the processing of blood samples, this method may serve to investigate RBC aggregation in various diseases and to search for adequate hemorheologic treatment.  相似文献   

18.
The role of red blood cell (RBC) aggregation as a determinant of in vivo blood flow is still unclear. This study was designed to investigate the influence of a well-controlled enhancement of RBC aggregation on blood flow resistance in an isolated-perfused heart preparation. Guinea pig hearts were perfused through a catheter inserted into the root of the aorta using a pressure servo-controlled pump system that maintained perfusion pressures of 30 to 100 mmHg. The hearts were beating at their intrinsic rates and pumping against the perfusion pressure. RBC aggregation was increased by Pluronic (F98) coating of RBC at a concentration 0.025 mg/ml, corresponding to about a 100% increment in RBC aggregation as measured by erythrocyte sedimentation rate. Isolated heart preparations were perfused with 0.40 l/l hematocrit unmodified guinea pig blood and with Pluronic-coated RBC suspensions in autologous plasma. At high perfusion pressures there were no significant differences between the flow resistance values for the two perfusates, with differences in flow resistance only becoming significant at lower perfusion pressures. These results can be interpreted to reflect the shear dependence of RBC aggregation: higher shear forces associated with higher perfusion pressures should have dispersed RBC aggregates resulting in blood flow resistances similar to control values. Experiments repeated in preparations in which the smooth muscle tone was inhibited by pre-treatment with papaverine indicated that significant effects of enhanced RBC aggregation could be detected at higher perfusion pressures, underlining the compensatory role of vasomotor control mechanisms.  相似文献   

19.
A novel experimental approach based on electrical properties of red blood cell (RBC) suspensions was applied to study the effects of the size and morphology of RBC aggregates on the transient cross-stream hematocrit distribution in suspensions flowing through a square cross-section flow channel. The information about the effective size of RBC aggregates and their morphology is extracted from the capacitance (C) and conductance (G) recorded during RBC aggregation, whereas a slower process of particle migration is manifested by delayed long-term changes in the conductance. Migration-induced changes in the conductance measured at low shear rates (< or =3.1 s(-1)) for suspensions of RBCs in a strongly aggregating medium reveal an increase to a maximum followed by a decrease to the stationary level. The ascending branch of G(t) curves reflects the aggregate migration in the direction of decreasing shear rate. A further RBC aggregation in the region of lower shear stresses leads to the formation of RBC networks and results in the transformation of the rheological behavior of suspensions from the thinning to the thickening. It is suggested that the descending branches of the G(t) curves recorded at low shear rates reflect an adjustment of the Hct distribution to a new state caused by a partial dispersion of RBC networks. For suspensions of non-aggregating RBCs it is found that depending on whether the shear rate is higher or lower compared with the prior value, individual RBCs migrate either toward the centerline of the flow or in the opposite direction.  相似文献   

20.
Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which exhibits a unique temperature dependence. However, further investigation is still required for understanding the temperature-dependent characteristics of hemorheology that includes RBC aggregation. In the present study, blood samples were examined at 3, 10, 20, 30, and 37 °C. When the temperature decreases, the whole-blood and plasma viscosities increase, whereas the aggregation indices (AI, M, and b) yield contrary results. Since these contradictory results are known to arise from an increase in the plasma viscosity as the temperature decreases, aggregation indices that were corrected for plasma viscosity were examined. The corrected indices showed mixed results with the variation of the temperature. However, the threshold shear rate and the threshold shear stress increased as the temperature decreased, which is a trend that agrees with that of the blood viscosity. As the temperature decreases, RBC aggregates become more resistant to hydrodynamic dispersion and the corresponding threshold shear stress increases as does the blood viscosity. Therefore, the threshold shear stress may help to better clarify the mechanics of RBC aggregation under both physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号