首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of organic solvents on the penicillin acylase-catalyzed, kinetically controlled synthesis of cefazolin have been examined in various water–solvent mixtures. In the presence of water-miscible solvents, the initial rate and maximum yield of cefazolin (CEZ) synthesis reaction were found to be reduced. The extent of inhibition was increased with increasing hydrophobicity of the solvent in the reaction mixtures. Enzymatic synthesis of cefazolin was also carried out in the water–solvent biphasic systems. Among the water-immiscible solvents tested, ethyl acetate (EtOAc) and carbon tetrachloride (CCl4) were found to markedly improve the yield of cefazolin in the two-phase reaction system. Our study showed that the enhancement effect of EtOAc and CCl4 on the synthetic yield was mainly caused by a reduction of the hydrolysis of acyl donor and product in the two-phase system rather than extraction of the product into the solvent phase.  相似文献   

2.
Summary The effect of water activity on the rate of thermolysin-catalyzed synthesis of an aspartame precursor has been investigated in water-miscible and water-immiscible solvents. In both cases, the enzyme reaction rate at a given water activity was found to be significantly different depending on the nature of the solvent. The reaction rates in water-immiscible solvents, where the water activities were close to 1.0, were found to be significantly dependent on the volume ratio of water to organic media and the hydrophobicity of the solvent. These data suggest that the enzyme reaction in the solvent is influenced appreciably by other factors in addition to the water activity.  相似文献   

3.
The effects of water on enzyme (protein) hydration and catalytic efficiency of enzyme molecules in organic solvents have been analyzed in terms of the thermodynamic activity of water, which has been estimated by the NRTL or UNIFAC equations. When the amount of water bound to the enzyme was plotted as a function of water activity, the water adsorption isotherms obtained from the water-solvent liquid mixtures were similar to the reported water-vapor adsorption isotherms of proteins. The water adsorption of proteins from the organic media was not significantly dependent on the properties of the solvents or the nature of the proteins. It is also shown that there is a linear relationship between the logarithm of the enzyme reaction rate and water activity. However, the dependence of the enzyme reaction rate on water activity was found to be different depending on the properties of the solvent. The relationship between water activity and other solvent parameters such as solvent hydrophobicity and the solubility of water in the solvent is also discussed.  相似文献   

4.
The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents.  相似文献   

5.
Both stability and catalytic activity of the HynSL Thiocapsa roseopersicina hydrogenase in the presence of different water-miscible organic solvents were investigated. For all organic solvents under study the substantial raise in hydrogenase catalytic activity was observed. The stimulating effect of acetone and acetonitrile on the reaction rate rose with the increase in solvent concentration up to 80%. At certain concentrations of acetonitrile and acetone (60–80%, v/v in buffer solution) the enzyme activity was improved even 4–5 times compared to pure aqueous buffer. Other solvents (aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran) improved the enzyme activity at low concentrations and caused enzyme inactivation at intermediate concentrations. The long-term incubation of the hydrogenase with aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran at intermediate concentrations of the latter caused enzyme inactivation. The reduced form of hydrogenase was found to be much more sensitive to action of these organic solvents than the enzyme being in oxidized state. The hydrogenase is rather stable at high concentrations of acetone or acetonitrile during long-term storage: its residual activity after incubation in these solvents upon air within 30 days was about 50%, and immobilized enzyme remained at the 100% of its activity during this period.  相似文献   

6.
The synthesis of four β-lactam antibiotics (penicillin G, pivaloyloxymethyl ester of penicillin G, ampicillin and pivampicillin) catalyzed byEscherichia coli penicillin acylase has been investigated in water-methanol mixtures. The enzyme reactions were either thermodynamically or kinetically controlled at the same conditions using phenylacetic acid andd--phenylglycine methyl ester as acyl donors and 6-aminopenicillanic acid and pivaloyloxymethyl 6-aminopenicillanic acid as acyl acceptors. It has been found that the influences of the cosolvent content on the reaction rates and synthetic yields are significantly different depending on the substrates used in the experiments. On the other hand, within certain ranges of the methanol content (up to ca. 40% (v/v) the residual activities of the enzymes in water-methanol mixtures were only slightly lower than those in aqueous media. To analyze the factors that determine the reaction rate in water-cosolvent mixtures, the effect of methanol on the apparent pK values of the substrates has been investigated, and a mathematical model has been developed on the basis of the assumption that the enzyme binds non-ionized substrates. Model simulation results indicate that the solvent effect on reaction rates is mainly attributed to the kinetic effects of changes in apparent pK values.  相似文献   

7.
A theoretical kinetic model has been developed in order to describe the enzyme reaction in organic solvents. In this model the hydration of the enzyme molecule was examined and the equilibrium kinetic constants expressed in terms of thermodynamic activity. Analysis of a proposed kinetic model shows that the enzyme reaction rate in organic solvents is determined by two factors: substrate solvation and enzyme hydration, which are determined by the activity coefficient of the substrate and the water activity of the reaction media, respectively. The activity coefficient of the substrate and the water activity have been calculated using the UNIFAC equation to analyze the effects of organic solvents on the rate of enzyme reaction, and the results were compared with experimental data. Predictions of the proposed model were found to be in good agreement with previous experimental observations.  相似文献   

8.
Effect of organic solvents on enantioselectivity of protease catalysis   总被引:1,自引:0,他引:1  
The protease-catalyzed transesterifications between N-trifluoroacetyl-DL-phenylalanine 2,2,2-trifluoroethyl ester and 1-propanol were studied in a variety of anhydrous organic solvents at 30 degrees C. The protease preparations lyophilized from phosphate buffer solutions (pH 8.0) were used as catalysts. The organic solvent affected both rate of reaction and enantioselectivity differently. Proteases such as Aspergillus oryzae protease, subtilisin Carlsberg, and subtilisin BPN' always preferred the L-enantiomer in both hydrophilic and hydrophobic solvents, indicating no inversion of the L-specificity in hydrophobic solvents such as toluene. However, enantioselectivity was rather poor, with E (enantiomeric ratio) values not exceeding even one order of magnitude except for acetonitrile. There was a weak inverse correlation between E values of subtilisin Carlsberg and solvent hydrophobicity (logP). Acetonitrile was a preferable solvent in terms of both rate of reaction and enantioselectivity (E= 15 to 25) for processing L-amino acid derivatives in organic media. Organic solvents generally have potential advantages of processing D-amino acid derivatives. (c) 1997 John Wiley & Sons, Inc.  相似文献   

9.
The hydrolysis of penicillin G in the presence of an organic solvent, used with the purpose of extracting it from the culture medium, may greatly simplify the industrial preparation of 6-APA. However, under these conditions, PGA immobilized onto Eupergit displays very low stability (half-life of 5 h in butanone-saturated water) and a significant degree of inhibition by the organic solvent (30%). The negative effect of the organic solvent strongly depended on the type of solvent utilized: water saturated with butanone (around 28% v/v) had a much more pronounced negative effect than that of methylisobutyl ketone (MIBK) (solubility in water was only 2%). These problems were sorted out by using a new penicillin G acylase derivative designed to work in the presence of organic solvents (with each enzyme molecule surrounded by an hydrophilic artificial environment) and a suitable organic solvent (MIBK). Using such solvent, this derivative kept its activity unaltered for 1 week at 32 degrees C. Moreover, the enzyme activity was hardly inhibited by the presence of the organic solvent. In this way, the new enzyme derivative thus prepared enables simplification of the industrial hydrolysis of penicillin G.  相似文献   

10.
Calculation of kinetic constants of an enzymatic reaction in organic solvents requires knowledge of the functional active-site concentration in organic solvents, and this can be significantly different than that in water. An experimental method for active-site titration of serine proteases in organic media has been developed based on the kinetics of inhibition by phenylmethanesulfonyl fluoride (PMSF), a serine-specific inhibitor (or suicide substrate). This kinetic approach is fundamentally different from other techniques that require complete titration of all accessible enzyme active sites. This active site titration method was applied to subtilisins BPN' and Carlsberg and alpha-chymotrypsin and resulted in fractions of active sites that ranged from 8 to 62% (of the fraction active in water) depending on the enzyme, the method of enzyme preparation, and the organic solvent used. The active-site concentration of subtilisin BPN' and Carlsberg increased with increasing hydrophobicity of the solvent and with increasing solvent hydration in tetrahydrofuran. The dependence of the fraction of active sites on the nature of the organic solvent appears to be governed largely by solvent-induced inactivation caused by direct interaction of a hydrophilic solvent with the enzyme. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Lipase catalyzed esterification of glycidol in organic solvents   总被引:1,自引:0,他引:1  
We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
Activity and flexibility of alcohol dehydrogenase in organic solvents   总被引:2,自引:0,他引:2  
The oxidation of cinnamyl alcohol to cinnamaldehyde by horse liver alcohol dehydrogenase (LADH) was carried out in nearly anhydrous organic solvents and in solvents containing from 0.1 to 10% added water. In nearly anhydrous solvents containing less than 0.02% water, the oxidation rate increased as the water solubility in the solvent decreased, but the reaction did not require active LADH. Moreover, the highest activity in nearly anhydrous heptane was obtained by lyophilizing the enzyme from a solution of pH 2.0, even though LADH exhibits virtually no enzymatic activity in water at this pH. The catalytic activity of LADH was restored and increased dramatically as small amounts of water were added to each solvent. In conjunction with the activity measurements, electron paramagnetic resonance (EPR) spectroscopy and two active-site directed spin labels were used to examine solvent-dependent structural features of LADH. The EPR spectra indicated that LADH became more rigid as the dielectric constant of the solvent decreased. The degree of rigidity also depended on the pH from which the enzyme was lyophilized, indicating that the ionization state of the enzyme can have an important influence on its dynamics in organic solvents. Finally, adding 1% water to organic solvents had no apparent effect on the enzyme's conformation or flexibility near the spin label, even though enzyme activity was an order of magnitude higher when 1% water was present.  相似文献   

13.
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.  相似文献   

14.
Trypsin was covalently immobilized on porous glass in the presence and absence of a specific substrate and reacted in various organic solvents of different dielectric constants. Optimum solvent concentration, pH profile, Km(app), Vmax(app), productivity versus temperature, activity, and reaction rates were determined. Reaction rates of six lysyl dipeptides were compared. Crystalline trypsin was dansylated for studies by nanosecond fluorescence techniques to determine the effects of introducing high concentrations of organic solvents on the molecule. The results indicated that greater reaction rates were observed with dipeptides having more acidic carboxyl terminal groups. The data also indicated that greater reaction rates were observed in higher concentrations of solvents of lower dielectric constants. Nanosecond fluorescence spectroscopy of trypsin in high concentrations of a low dielectric constant solvent indicated major dehydration even though maximal enzyme activity was achieved under these conditions.  相似文献   

15.
Biocatalytic transesterification of methylmethacrylate is possible in many different solvents. The reaction rate is readily controlled by variation in solvent physical properties. The reaction proceeds better in hydrophobic solvents, and activity can be restored in hydrophilic solvents by the addition of water. We have now demonstrated that supercritical carbon dioxide is not a good solvent for the reaction between 2-ethlhexanol and methylmethacrylate. It apperars that the supercritical carbon dioxide may either alter the pH of the microaqueous environment associated with the protein or reversibly form covalent complexes with free amine groups on the surface of the enzyme. Although supercritical carbon dioxide is a poor solvent for acrylate transesterification, many other supercritical fluids (ethane, ethylene, sulfur hexafluoride, and fluoroform) are better than most conventional solvents. In supercritical ethane it is possible to control the activity of the enzyme by changing pressure, and the enzyme appears to follow Michaelis-Menten Kinetics. We find that sulfur hexafluoride, the first anhydrous inorganic solvent in which biocatalytic activity has been reported, is a better solvent than any conventional or supercritical organic fluid tested.  相似文献   

16.
We have examined enzymes in nearly anhydrous organic solvents spanning a wide range of dielectric constants using a combination of electron paramagnetic resonance (EPR) spectroscopy, molecular dynamics simulations, high-pressure kinetic studies and the electrostatic model of Kirkwood. This approach enabled us to investigate the relationship between catalytic activity, protein flexibility and solvent polarity for an enzymatic reaction proceeding through a highly polar transition state in the near absence of water. Further insights into water-protein interactions and the involvement of water in enzyme structure and function have been obtained by EPR and multinuclear nuclear magnetic resonance studies of enzymes suspended and immobilized in organic solvents with and without added water. In these systems, correlations were observed between the water content and enzyme activity, flexibility, and active-site polarity, although the structural properties of suspended and immobilized enzymes differed markedly. These results have helped to elucidate the role of water in molecular events at the enzymic active site leading to improved biocatalysis in low-water environments.  相似文献   

17.
Homogeneous biocatalysis in organic solvents and water-organic mixtures   总被引:1,自引:0,他引:1  
Biocatalysis in non-aqueous media has undergone tremendous development during the last decade, and numerous reactions have been introduced and optimized for synthetic applications. In contrast to aqueous enzymology, biotransformations in organic solvents offer unique industrially attractive advantages, such as: drastic changes in the enantioselectivity of the reaction, the reversal of the thermodynamic equilibrium of hydrolysis reactions, suppression of water-dependent side reactions, and resistance to bacterial contamination. Currently, the field is dominated by heterogeneous biocatalysis based primarily on lyophilized enzyme powders, cross-linked crystals, and enzymes immobilized on inert supports that are mainly applied in enantioselective synthesis. However, low reaction rates are an inherent problem of the heterogeneous biocatalysis, while the homogeneous systems have the advantage that the elimination of diffusional barriers of substrates and products between organic and water phases results in an increase in the reaction rate. Here the discussion is focused on the correlation between activity and structure of the intact enzymes dissolved in neat organic solvents, as well as modifications of natural enzymes, which make them soluble and catalytically active in non-aqueous environment. Factors that influence conformation and stability of the enzymes are also discussed. Current developments in non-aqueous biocatalysts that combine advantages of protein modification and immobilization, i.e., HIP plastics, enzyme chips, ionic liquids, are introduced. Finally, engineering enzymes for biotransformations in non-conventional media by directed evolution is summarized.  相似文献   

18.
Initial rates of peptide-bond synthesis catalyzed by poly(ethylene glycol)-modified chymotrypsin in benzene were determined using high-performance liquid chromatography. Enzymatic synthesis of N-benzoyl-L-tyrosyl-L-phenylalanine amide from N-benzoyl-L-tyrosine ethyl ester and L-phenylalanine amide was found to obey Michaelis-Menten kinetics an to be consistent with a ping-pong mechanism modified by a hydrolytic branch. The catalytic activity of modified chymotrypsin was dependent on both water concentration and type of organic solvent, the highest synthesis rate being obtained in toluene. Since the chymotrypsin specificity in the organic phase was actually altered, the enzyme's apparent kinetic parameters were determined for different substrates and compared to those obtained with other serine proteases in benzene. Both N-benzoyl-L-tyrosine ethyl ester and N-alpha-benzoyl-L-lysine methyl ester were comparable acyl donors in benzene and the (kcat/Km)app value of modified chymotrypsin was only 10-fold smaller than that obtained with poly(ethylene glycol)-modified trypsin in the synthesis of N-alpha-benzoyl-L-lysyl-L-phenylalanine amide. The change in chymotrypsin specificity was also confirmed through the binding of trypsin inhibitors in benzene. The overall results suggest that hydrophobic bonding between the enzyme and its substrate should not be taken into account during catalysis in the organic phase. In general, if hydrophobic interactions are involved in the binding of substrates to the active site in aqueous media, the replacement of water by hydrophobic solvents will induce some change in enzyme specificity. Moreover, secondary residues of enzyme-binding sites may also exert a significant influence on specificity since, as observed in this study, chymotrypsin exhibited high affinity for cationic substrates and cationic inhibitors as well in apolar solvents.  相似文献   

19.
Published data for water adsorption by proteins suspended in organic solvents (of interest as enzyme reaction mixtures) have been converted to a basis of thermodynamic water activity (aw). The resulting adsorption isotherms have been compared with those known for proteins equilibrated with water from a gas phase. This comparison can show any effects of the solvent on the interaction between the protein and water at the molecular level. At lower water contents (aw less than about 0.4), similar adsorption isotherms are found in each solvent and in the gas phase; differences are probably less than the likely errors. Hence, it may be concluded that the presence of an organic solvent has little effect on the interaction between proteins and tightly bound water; on a molecular scale there is probably little penetration of the primary hydration layer by solvent molecules, even fairly polar ones such as EtOH. At higher aw values, there are differences between the isotherms which probably are significant. Nonpolar solvents increase the amount of water bound by the enzyme (at fixed aw), while polar solvents (mainly EtOH) may reduce the amount of water bound by the enzyme, presumably by occupying part of the secondary hydration layers in place of water.  相似文献   

20.
Summary Subtilisin from Bacillus subtilis was modified with polyethylene glycol (PEG), or adsorbed either on celite or porous glass, or directly used as a suspended powder to catalyse peptide synthesis and transesterification reactions in organic solvents. The rather low yield of peptide synthesis probably resulted from the enzyme tendency to catalyse hydrolysis and transesterification side reactions. The kinetics of transesterification catalysed by PEG-subtilisin was consistent with a ping-pong mechanism modified by a hydrolytic branch. Initial rates of transesterification were found to be dependent on alcohol and organic base concentrations in the reaction mixture. The high affinity of benzyloxycarbonyl-l-serine-methyl ester for the enzyme indicated that a change in substrate specificity of subtilisin occurred in organic phase. The 50-fold increase in the rate of synthesis of benzyloxycarbonyl-l-serine-l-phenylalanine amide which was observed when PEG-subtilisin was used instead of immobilized or powdered enzyme, suggested that a higher flexibility of the polypeptide chain modified by the covalent attachment of a number of soluble PEG moieties occurred in organic solvents. This also resulted in a lower stability of PEG-subtilisin at high temperature.Offprint requests to: A. Puigserver  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号