首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

2.
Sueoka N  Kawanishi Y 《Gene》2000,261(1):53-62
The human genome, as in other eukaryotes, has a wide heterogeneity in the DNA base composition. The evolutionary basis for this heterogeneity has been unknown. A previous study of the human genome (846 genes analyzed) has shown that, in the major range of the G+C content in the third codon position (0.25-0.75), biases from the Parity Rule 2 (PR2) among the synonymous codons of the four-codon amino acids are similar except in the highest G+C range (Sueoka, N., 1999. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238, 53-58.). PR2 is an intra-strand rule where A=T and G=C are expected when there are no biases between the two complementary strands of DNA in mutation and selection rates (substitution rates). In this study, 14,026 human genes were analyzed. In addition, the third codon positions of two-codon amino acids were analyzed. New results show the following: (a) The G+C contents of the third codon position of human genes are scattered in the G+C range of 0.22-0.96 in the third codon position. (b) The PR2 biases are similar in the range of 0.25-0.75, whereas, in the high G+C range (0.75-0.96; 13% of the genes), the PR2-bias fingerprints are different from those of the major range. (c) Unlike the PR2 biases, the G+C contents of the third codon position for both four-codon and two-codon amino acids are all correlated almost perfectly with the G+C content of the third codon position over the total G+C ranges. These results support the notion that the directional mutation pressure, rather than the directional selection pressure, is mainly responsible for the heterogeneity of the G+C content of the third codon position.  相似文献   

3.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

4.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

5.
Codon usage in the G+C-rich Streptomyces genome.   总被引:45,自引:0,他引:45  
F Wright  M J Bibb 《Gene》1992,113(1):55-65
The codon usage (CU) patterns of 64 genes from the Gram+ prokaryotic genus Streptomyces were analysed. Despite the extremely high overall G+C content of the Streptomyces genome (estimated at 0.74), individual genes varied in G+C content from 0.610 to 0.797, and had third codon position G+C contents (GC3s) that varied from 0.764 to 0.983. The variation in GC3s explains a significant proportion of the variation in CU patterns. This is consistent with an evolutionary model of the Streptomyces genome where biased mutation pressure has led to a high average G+C content with random variation about the mean, although the variation observed is greater than that expected from a simple binomial model. The only gene in the sample that can be confidently predicted to be highly expressed, EF-Tu of Streptomyces coelicolor A3(2) (GC3s = 0.927), shows a preference for a third position C in several of the four codon families, and for CGY and GGY for Arg and Gly codons, respectively (Y = pyrimidine); similar CU patterns are found in highly expressed genes of the G+C-rich Micrococcus luteus genome. It thus appears that codon usage in Streptomyces is determined predominantly by mutation bias, with weak translational selection operating only in highly expressed genes. We discuss the possible consequences of the extreme codon bias of Streptomyces and consider how it may have evolved. A set of CU tables is provided for use with computer programs that locate protein-coding regions.  相似文献   

6.
The number and relative amount of isoacceptor tRNAs for each amino acid in Micrococcus luteus, a Gram-positive bacterium with high genomic G + C content, have been determined by sequencing their anticodon loop and its adjacent regions and by selective labelling of tRNAs. Thirty-one tRNA species with 29 different anticodon sequences have been detected. All the tRNAs have G or C at the anticodon first position except for tRNA(ICGArg) and tRNA(NGASer), in response to the abundant usage of NNC and NNG codons. No tRNA with the anticodon UNN capable of translating codon NNA has been detected, in accordance with a very low or zero usage of NNA codons. The relative amount of isoacceptor tRNAs for an amino acid determined by selective labelling strongly correlates with usage of the corresponding codons. On the basis of these and other observations in this and other eubacterial species, we conclude that the relative amount and anticodon composition of isoacceptor tRNA species are flexible, and their changes are mainly adaptive phenomena that have been primarily affected by codon usage, which in turn is affected by directional mutation pressure.  相似文献   

7.
Summary Nucleotide substitutions in the form of transitions (purine-purine or pyrimidine-pyrimidine interchanges) and transversions (purine-pyrimidine interchanges) occur during evolution and may be complied by aligning the sequences of homologous genes. Referring to the genetic code tables, silent transitions take place in third positions of codons in family boxes and two-codon sets. Silent transversions in third positions occur only in family boxes, except for AC transversions between AGR and CGR arginine codons (R=A or G). Comparisons of several protein genes have been made, and various subclasses of transitional and transversional nucleotide substitutions have been compiled. Considerable variations occur among the relative proportions of transitions and transversions. Such variations could possibly be caused by mutator genes, favoring either transitions or, conversely, transversions, during DNA replication. At earlier stages of evolutionary divergence, transitions are usually more frequent, but there are exceptions. No indication was found that transversions usually originate from multiple substitutions in transitions.  相似文献   

8.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

9.
10.
J.C. Shepherd notes that codons of the type RNY (R = purine, N = any nucleotide base, Y = pyrimidine) predominate over RNR in the genes for proteins. He has hypothesized that RNY codons are the relics of “a primitive code” composed of repeating RNY triplets. He found that RNY codons predominated in fourfold RNN codon sets (family boxes). These family boxes code for valine, threonine, alanine, and glycine. We argue that the proposed “comma-less” code composed of RNY never existed, and that, in any case, survival of such a code would have long since been erased by mutations. The excess of RNY codons in family boxes is probably attributable to preference for the corresponding tRNAs.  相似文献   

11.
The complete sequence of honeybee (Apis mellifera) mitochondrial DNA is reported being 16,343 bp long in the strain sequenced. Relative to their positions in the Drosophila map, 11 of the tRNA genes are in altered positions, but the other genes and regions are in the same relative positions. Comparisons of the predicted protein sequences indicate that the honeybee mitochondrial genetic code is the same as that for Drosophila; but the anticodons of two tRNAs differ between these two insects. The base composition shows extreme bias, being 84.9% AT (cf. 78.6% in Drosophila yakuba). In protein-encoding genes, the AT bias is strongest at the third codon positions (which in some cases lack guanines altogether), and least in second codon positions. Multiple stepwise regression analysis of the predicted products of the protein-encoding genes shows a significant association between the numbers of occurrences of amino acids and %T in codon family, but not with the number of codons per codon family or other parameters associated with codon family base composition. Differences in amino acid abundances are apparent between the predicted Apis and Drosophila proteins, with a relative abundance in the Apis proteins of lysine and a relative deficiency of alanine. Drosophila alanine residues are as often replaced by serine as conserved in Apis. The differences in abundances between Drosophila and Apis are associated with %AT in the codon families, and the degree of divergence in amino acid composition between proteins correlates with the divergence in %AT at the second codon positions. Overall, transversions are about twice as abundant as transitions when comparing Drosophila and Apis protein-encoding genes, but this ratio varies between codon positions. Marked excesses of transitions over chance expectation are seen for the third positions of protein-coding genes and for the gene for the small subunit of ribosomal RNA. For the third codon positions the excess of transitions is adequately explained as due to the restriction of observable substitutions to transitions for conserved amino acids with two-codon families; the excess of transitions over expectation for the small ribosomal subunit suggests that the conservation of nucleotide size is favored by selection.  相似文献   

12.
《Gene》1998,215(2):405-413
Biases in the codon usage and base compositions at three codon sites in different genes of A+T-rich Gram-negative bacterium Haemophillus influenzae and G+C-rich Gram-positive bacterium Mycobacterium tuberculosis have been examined to address the following questions: (1) whether the synonymous codon usage in organisms having highly skewed base compositions is totally dictated by the mutational bias as reported previously (Sharp, P.M., Devine, K.M., 1989. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do `prefer' optimal codons. Nucleic Acids Res. 17, 5029–5039), or is also controlled by translational selection; (2) whether preference of G in the first codon positions by highly expressed genes, as reported in Escherichia coli (Gutierrez, G., Marquez, L., Marin, A., 1996. Preference for guanosine at first codon position in highly expressed Escherichia coli genes. A relationship with translational efficiency. Nucleic Acids Res. 24, 2525–2527), is true in other bacteria; and (3) whether the usage of bases in three codon positions is species-specific. Result presented here show that even in organisms with high mutational bias, translational selection plays an important role in dictating the synonymous codon usage, though the set of optimal codons is chosen in accordance with the mutational pressure. The frequencies of G-starting codons are positively correlated to the level of expression of genes, as estimated by their Codon Adaptation Index (CAI) values, in M. tuberculosis as well as in H. influenzae in spite of having an A+T-rich genome. The present study on the codon preferences of two organisms with oppositely skewed base compositions thus suggests that the preference of G-starting codons by highly expressed genes might be a general feature of bacteria, irrespective of their overall G+C contents. The ranges of variations in the frequencies of individual bases at the first and second codon positions of genes of both H. influenzae and M. tuberculosis are similar to those of E. coli, implying that though the composition of all three codon positions is governed by a selection-mutation balance, the mutational pressure has little influence in the choice of bases at the first two codon positions, even in organisms with highly biased base compositions.  相似文献   

13.
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.  相似文献   

14.
Among a sample of 39 Geodia cydonium (Demospongiae, Porifera) genes, with an average G + C content of 51.2%, extensive structural heterogeneity and considerable variations in synonymous codon usage were found. The G + C content of coding sequences and G + C content at silent codon positions (GC3S) varied from 42.4 to 59.2% and from 35.6 to 76.5%, respectively. Correspondence analysis of 39 genes revealed that putative highly expressed genes preferentially use a limited subset of codons, which were therefore defined as preferred codons in G. cydonium . A total of 22 preferred codons for 18 amino acids with synonyms in codons were identified and they all (with one exception) end with C or G. Among these codons there are also C- and G-ending codons which were previously identified as codons optimal for translation in a variety of eukaryotes, including metazoans and plants. The bias in synonymous codon usage in putative highly expressed G. cydonium genes is moderate, indicating that these genes are not shaped under strong natural selection. We postulate that the preference for C- and G-ending codons was already established in the ancestor of all Metazoa, including also sponges. This ancestor most probably also had a G + C rich genome. The selection toward C- and G-ending codons has been largely conserved throughout eukaryote evolution; exceptions are, for example, mammals for which strong mutational biases caused switches from that rule.  相似文献   

15.
Codon usage data of bacteriophage T4 genes were compiled and synonymous codon preferences were investigated in comparison with tRNA availabilities in an infected cell. Since the genome of T4 is highly AT rich and its codon usage pattern is significantly different from that of its host Escherichia coli, certain codons of T4 genes need to be translated by appropriate host transfer RNAs present in minor amounts. To avoid this predicament, T4 phage seems to direct the synthesis of its own tRNA molecules and these phage tRNAs are suggested to supplement the host tRNA population with isoacceptors that are normally present in minor amounts. A positive correlation was found in that the frequency of E. coli optimal codons in T4 genes increases as the number of protein monomers per phage particle increases. A negative correlation was also found between the number of protein monomers per phage and the frequency of "T4 optimal codons", which are defined as those codons that are efficiently recognized by T4 tRNAs. From these observations it was proposed that tRNAs from the host are predominantly used for translation of highly expressed T4 genes while tRNAs from T4 tend to be used for translation of weakly expressed T4 genes. This distinctive tRNA-usage in T4 may be an optimization of translational efficiency, and an adjustment of T4-encoded tRNAs to the synonymous codon preferences, which are largely influenced by the high genomic AT-content, would have occurred during evolution.  相似文献   

16.
Strongly biased codon usage is common in unicellular organisms, particularly in highly expressed genes. The bias is most simply explained as a balance between selection and mutation, with selection favouring those codons which are more efficiently translated. In a review Ikemura (1985) has proposed four rules for predicting which codons will be preferred, based on the properties of the transfer RNAs responsible for translating messenger RNA into protein. In this paper codon usage in E. coli and yeast is re-examined using the recent compilation of Maruyama et al. (1986). The codon adaptation index of Sharp and Li (1986a) is used as a measure of gene expression to investigate the importance of this factor. It is found that Ikemura's rules successfully predict preferred codons for yeast, but that two of them work less well for E. coli, and it is suggested that some of the apparent bias in weakly expressed genes of E. coli may be due to contextual effects on mutation rates.  相似文献   

17.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

18.
M Bulmer 《Nucleic acids research》1990,18(10):2869-2873
The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes.  相似文献   

19.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

20.
The constraints on nucleotide sequences of highly and weakly expressed genes from Escherichia coli have been analysed and compared. Differences in synonymous codon spectra in highly and weakly expressed genes lead to different frequencies of nucleotides (in the first and third codon positions) and dinucleotides in the two groups of genes. It has been found that the choice of synonymous codons in highly expressed genes depends on the nucleotides adjacent to the codon. For example, lysine is preferably encoded by the AAA codon if guanosine is 3' to the lysine codon (AAA-G, P less than 10(-9)). And, on the contrary, AAG is used more often than AAA (P less than 0.001) if cytidine is 3' adjacent to lysine. Guanosine occurs more frequently than adenosine 5' to all the lysine codons (AAR, P less than 10(-5), i.e. NNG codons are preferred over the synonymous NNA codons 5' to the positions of lysine in the genes. The context effect was observed in nonsense and missense suppression experiments. Therefore, a hypothesis has been suggested that the efficiency of translation of some codons (for which the constraints on the adjacent nucleotides were found) can be modulated by the codon context. The rules for preferable synonymous codon choice in highly expressed genes depending on the nucleotides surrounding the codon are presented. These rules can be used in the chemical synthesis of genes designed for expression in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号