首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have discovered highly potent, selective sulfide M(2) receptor antagonists with low molecular weight and different structural features compared with our phase I clinical candidate Sch 211803. Analogue 30 showed superior M(2) receptor selectivity profile over Sch 211803. More importantly, this study provided new leads for the discovery of M(2) receptor antagonists as potential drug candidates.  相似文献   

2.
Rational drug design utilizing a receptor homology model of the human muscarinic M1 receptor led to the discovery of the highly potent (Ki = 2 nM), efficacious, and in vivo functionally-selective M1 agonist, WAY-132983.  相似文献   

3.
Screening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins. The authors present a proof-of-concept study using size exclusion chromatography coupled to AS-MS to perform a primary screen for small-molecule ligands of the purified muscarinic M2 acetylcholine receptor, a G-protein-coupled receptor. AS-MS is used to characterize the binding mechanisms of 2 newly discovered ligands. NGD-3350 is a novel M2-specific orthosteric antagonist of M2 function. NGD-3366 is an allosteric ligand with binding properties similar to the allosteric antagonist W-84, which decreases the dissociation rate of N-methyl-scopolamine from the M2 receptor. Binding properties of the ligands discerned from AS-MS assays agree with those from in vitro biochemical assays. The authors conclude that when used with appropriate small-molecule libraries, AS-MS may provide a useful high-throughput assay system for the discovery and characterization of all classes of integral membrane protein ligands, including allosteric modulators.  相似文献   

4.
Structure activity studies on [4-(phenylsulfonyl)phenyl]methylpiperazine led to the discovery of 4-cyclohexyl-alpha-[4-[[4-methoxyphenyl(S)-sufinyl]phenyl]-1-pi perazineacetonitrile, 1, an M2 selective muscarinic antagonist. Affinity at the cloned human M2 receptor was 2.7 nM; the M1/M2 selectivity is 40-fold.  相似文献   

5.
We describe the discovery of a series of compounds based on 1-{3-[4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-piperidin-1-yl]-propyl}-3,4-dihydro-1H-quinolin-2-one (3), showing combined D(2) receptor affinity and M(1) receptor agonism. Based on a strategy of controlling logP, we herein describe a hit-to-lead investigation with the aim of retaining the combined D(2)/M(1) profile, while removing the propensity of the compounds to inhibit the hERG channel, as well as at obtaining acceptable pharmacokinetic properties. Although a SAR was evident for all four parameters in question, it was not possible to separate hERG channel inhibition and D(2) receptor affinity by this effort; whilst it was feasible to obtain compounds with M(1) receptor agonism, acceptable clearance, and weak hERG inhibition.  相似文献   

6.
Recently, we disclosed 4-aminoquinolines as structurally novel NR1/2B subtype selective NMDA receptor antagonists. We would now like to report our findings on structurally related pyridine analogues. The SAR developed in this series resulted in the discovery of high affinity antagonists which are selective (vs alpha1 and M1 receptors) and active in vivo.  相似文献   

7.
Herein we describe the discovery and development of a novel class of M(4) positive allosteric modulators, culminating in the discovery of ML293. ML293 exhibited modest potency at the human M4 receptor (EC(50)=1.3 μM) and excellent efficacy as noted by the 14.6-fold leftward shift of the agonist concentration-response curve. ML293 was also selective versus the other muscarinic subtypes and displayed excellent in vivo PK properties in rat with low IV clearance (11.6 mL/min/kg) and excellent brain exposure (PO PBL, 10 mg/kg at 1h, [Brain]=10.3 μM, B:P=0.85).  相似文献   

8.
We have recently reported the discovery of numerous new compounds that are selective inhibitors of all of the subtypes of the adenosine receptor family via a pharmacophore database searching and screening strategy. During the course of this work we made the unexpected discovery of a potent A(2B) receptor antagonist, 4-methyl-7-methoxyquinazolyl-2-(2'-amino-4'-imidazolinone) (38, CMB 6446), which showed selectivity for this receptor and functioned as an antagonist, with a binding K(i) value of 112 nM. We explored the effects of both substituent- and ring-structural variations on the receptor affinity in this series of derivatives, which were found to be mostly non-selective adenosine receptor ligands with K(i) values in the micromolar range. Since no enhancement of A(2B) receptor affinity of 38 was achieved, the previously reported pharmacophore-based searching strategy yielded the most potent and selective structurally-related hit in the database originally searched.  相似文献   

9.
Herein we report the discovery and SAR of a novel metabotropic glutamate receptor 3 (mGlu(3)) NAM probe (ML289) with 15-fold selectivity versus mGlu(2). The mGlu(3) NAM was discovered via a 'molecular switch' from a closely related, potent mGlu(5) positive allosteric modulator (PAM), VU0092273. This NAM (VU0463597, ML289) displays an IC(50) value of 0.66 μM and is inactive against mGlu(5).  相似文献   

10.
Ehlert FJ 《Life sciences》2003,74(2-3):355-366
Both M(2) and M(3) muscarinic receptors are expressed in smooth muscle and influence contraction through distinct signaling pathways. M(3) receptors interact with G(q) to trigger phosphoinositide hydrolysis, Ca(2+) mobilization and a direct contractile response. In contrast, M(2) receptors interact with G(i) and G(o) to inhibit adenylyl cyclase and Ca(2+)-activated K(+) channels and to potentiate a Ca(2+)-dependent, nonselective cation conductance. Ultimately, these mechanisms lead to the prediction that the influence of the M(2) receptor on contraction should be conditional upon mobilization of Ca(2+) by another receptor such as the M(3). Mathematical modeling studies of these mechanisms show that the competitive antagonism of a muscarinic response mediated through activation of both M(2) and M(3) receptors should resemble the profile of the directly acting receptor (i.e., the M(3)) and not that of the conditionally acting receptor (i.e., the M(2)). Using a combination of pharmacological and genetic approaches, we have identified two mechanisms for the M(2) receptor in contraction: 1) a high potency inhibition of the relaxation elicited by agents that increase cytosolic cAMP and 2) a low potency potentiation of contractions elicited by the M(3) receptor. The latter mechanism may be involved in muscarinic agonist-mediated heterologous desensitization of smooth muscle, which requires activation of both M(2) and M(3) receptors.  相似文献   

11.
The present work describes the discovery of novel series of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene)acetamide derivatives as arginine vasopressin (AVP) V(2) receptor agonists. By replacing the amide juncture in YM-35278 with a direct ring connection gave compound 10a, which acts as a V(2) receptor agonist. These studies provided the potent, orally active non-peptidic V(2) receptor agonists 10a and 10j.  相似文献   

12.
We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later, bronchoconstriction induced by either intravenous histamine (which is partly vagally mediated) or electrical stimulation of the vagus nerves was increased by viral infection compared with control. In addition, the ability of the muscarinic agonist pilocarpine to inhibit vagally induced bronchoconstriction was lost in virus-infected animals, demonstrating loss of neuronal M(2) receptor function. Macrophage influx into the lungs was inhibited by pretreatment with both antagonists. However, only the NK(1) receptor antagonist prevented M(2) receptor dysfunction and inhibited hyperresponsiveness (measured as an increase in either vagally induced or histamine-induced bronchoconstriction). Thus virus-induced M(2) receptor dysfunction and hyperresponsiveness are prevented by a NK(1) receptor antagonist, but not by a NK(2) receptor antagonist, whereas both antagonists had similar anti-inflammatory effects.  相似文献   

13.
Dopamine D1/D2 receptors are important targets for drug discovery in the treatment of central nervous system diseases. To discover new and potential D1/D2 ligands, 17 derivatives of tetrahydroprotoberberine (THPB) with various substituents were prepared by chemical synthesis or microbial transformation using Streptomyces griseus ATCC 13273. Their functional activities on D1 and D2 receptors were determined by cAMP assay and calcium flux assay. Seven compounds showed high activity on D1/D2 receptor with low IC50 values less than 1?µM. Especially, top compound 5 showed strong antagonistic activity on both D1 and D2 receptor with an IC50 of 0.391 and 0.0757?µM, respectively. Five compounds displayed selective antagonistic activity on D1 and D2 receptor. The SAR studies revealed that (1) the hydroxyl group at C-9 position plays an important role in keeping a good activity and small or fewer substituents on ring D of THPBs may also stimulate their effects, (2) the absence of substituents at C-9 position tends to be more selective for D2 receptor, and (3) hydroxyl substitution at C-2 position and the substitution at C-9 position may facilitate the conversion of D1 receptor from antagonist to agonist. Molecular docking simulations found that Asp 103/Asp 114, Ser 107/Cys 118, and Trp 285/ Trp 386 of D1/ D2 receptors are the key residues, which have strong interactions with the active D1/D2 compounds and may influence their functional profiles.  相似文献   

14.
Muscarinic M(3) receptors stimulate ERK1/2, the mitogen-activated protein kinase pathway. A mutant of the muscarinic M(3) receptor in which most of the third intracellular (i3) loop had been deleted (M(3)-short) completely lost the ability to stimulate the ERK1/2 phosphorylation in COS-7 cells. This loss was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. In co-transfected cells, M(3)-short greatly reduced the ability of M(3) to activate ERK1/2. In another set of experiments we tested the ability of a mutant M(3)/M(2)(16aa) receptor, in which the first 16 amino acids of the i3 loop of the M(3) receptor were replaced with the corresponding segment of the muscarinic M(2) receptor to stimulate ERK1/2 phosphorylation. This mutant is not coupled to Galpha(q), but it is weakly coupled to Galpha(i). Despite its coupling modification this receptor was able to stimulate ERK1/2 phosphorylation. Again, M(3)-short greatly reduced the ability of M(3)/M(2)(16aa) to activate ERK1/2 in co-transfected cells. Similar results were obtained in stable-transfected Chinese hamster ovary (CHO) cells lines. In CHO M(3) cells carbachol induced a biphasic increase of ERK1/2 phosphorylation; a first increase at doses as low as 0.1 microm and a second increase starting from 10 microm. In CHO M(3)-short and in double-transfected CHO M(3)/M(3)-short cells we observed only the lower doses increase of ERK1/2 phosphorylation; no further increase was observed up to 1 mm carbachol. This suggests that in double-transfected CHO cells M(3)-short prevents the effect of the higher doses of carbachol on the M(3) receptor. In a final experiment we tested the ability of co-transfected chimeric alpha(2)/M(3) and M(3)/alpha(2) receptors to activate the ERK1/2 pathway. When given alone, carbachol and, to a lesser extent, clonidine, stimulated the coupling of the co-transfected chimeric receptors to the phospholipase C second messenger pathway, but they were unable to stimulate ERK1/2 phosphorylation. On the contrary, a strong stimulation of ERK1/2 phosphorylation was observed when the two agonists were given together despite the fact that the overall increase in phosphatidylinositol hydrolysis was not dissimilar from that observed in cells treated with carbachol alone. Our data suggest that the activation of the ERK1/2 pathway requires the coincident activation of the two components of a receptor dimer.  相似文献   

15.
16.
The Cytosensor microphysiometer device (Molecular Devices, Sunnyvale, CA) is capable of measuring the rate at which cells acidify their environment in response to ligand–receptor binding. By measuring the extracellular acidification response (ECAR) we characterized some aspects of ligand–B2 receptor interaction in SHP-77 cell line. SHP-77 cells maximally acidified their environment within 30 s after the exposure to bradykinin (BK) or the BK agonist, B9972, with the maximum effect seen at a ligands concentration of 1 μM. Fetal bovine serum (FBS) modulated the binding of BK or B9972, showing that B9972 is a partial agonist. In addition, the binding of BK agonist or antagonist to the B2 receptor showed different ECAR and different interaction with other intracellular and plasma membrane proteins. Our microphysiometrical results showed that two parameters, antagonist binding affinity (pD2) and antagonist potency (pIC50) are required to characterize BK antagonist activity for the B2 receptor in the SHP-77 cell line. The previously used parameter of B2 antagonist activity, pA2, had high variation and poor correlation with the inhibition of SHP-77 cell growth in vitro and suppression of tumor growth when SHP-77 cells were injected to mice. Our results permit us to conclude that BK agonists and antagonists differ in their interactions with the B2 receptor and consequently elicit different cell responses. Based on our results, we have developed a new microphysiometrical assay for analyzing the activity of BK agonists and antagonist in SHP-77 cells, which may facilitate the discovery of new potent anticancer drugs.  相似文献   

17.
beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.  相似文献   

18.
The identification of potent and selective muscarinic M(3) antagonists that are based on the recently discovered triphenylpropioamide derivative, 1, and have a unique amino acid spacer group is described. The introduction of a hydroxyproline-proline group to the spacer site and the use of a propyl or cyclopropylmethyl group as the piperidine N-substituent led to the discovery of the novel M(3) selective antagonists [8c, 8g; K(i)<2 nM (M(3)), M(1)/M(3)>700-fold, M(2)/M(3)>180-fold], which have a more rigid structure than 1.  相似文献   

19.
Rats which do not respond consistently to maximal electroshock by exhibiting the classical hindlimb extensor response, are designated as 'flexors', and can serve as a useful experimental model for investigating seizure mechanisms. 20-25% Charles Foster rats exhibit the flexor status and were used in this study. The flexor rats were converted to extensors by acetylcholine (icv), physostigmine (ip) and the selective muscarinic M1 receptor agonists, arecholine (ip) and McN-A-343 (icv). This conversion of flexors to extensors was significantly attenuated by M1 receptor antagonists scopolamine (ip) and pirenzepine (icv). The M2 receptor agonist, carbachol (icv), had no effect in lower doses but induced conversion of flexor rats to the extensor status only in very high doses which may be due to loss of receptor specificity on dose increment. The M2 receptor antagonists, gallamine (icv) and AF-DX 116 (ip), also induced significant conversion of flexors to extensors, which was dependent upon the availability of neuronal acetylcholine since the effects were attenuated following pretreatment with hemicholinium, an inhibitor of acetylcholine synthesis. The results suggest that the central cholinergic system has a facilitatory pro-convulsant effect, mediated through the muscarinic M1 receptors, an action modulated by the M2 receptors.  相似文献   

20.
Free fatty acid receptor 2 (FFA2) is a G-protein coupled receptor for which only short-chain fatty acids (SCFAs) have been reported as endogenous ligands. We describe the discovery and optimization of phenylacetamides as allosteric agonists of FFA2. These novel ligands can suppress adipocyte lipolysis in vitro and reduce plasma FFA levels in vivo, suggesting that these allosteric modulators can serve as pharmacological tools for exploring the potential function of FFA2 in various disease conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号