首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

2.
As a first step to characterizing membrane function during theprocess of germination in pollen, the transport characteristicsof Lilium longiflorum Thunbpollen were examined in the quiescentgrains.Membrane voltages were recorded, and conventional voltage-clampmeasurements were carried out with double-barrelled microelectrodes.The resting membrane voltage (Vm) was found to depend on theexternal K+; concentration and generally followed the equilibriumpotential for Kplus; (Ek). In some cells a more negative Vmwas measured indicating the presence of an electrogenic pump.The presence of a pump current was also detected by a depolarizationof the plasma membrane after inhibition of ATP synthesis byaddition of CN and SHAM. Besides this pump, two othercurrent components were found in the plasma membrane of ungerminatedpollen grains: an outward potassium current (lk,out) and aninward K+ current (lk,in). Outward K+ currents were detectedat membrane voltages more positive than the resting voltageand were blocked by externally applied TEA+ and Ba2+. The voltageat which lk,out was first detected shifted in parallel withthe equilibrium potential for K+. By contrast, activation oflk,in was less affected by the external K+ concentration, exceptthat the magnitude of the inward current increased with K+ concentration.The detected current components may be involved in initiationof osmotic water influx for germination by allowing a K+ influxafter the membrane voltage has been driven more negative thanEk by an electrogenic pump. Key words: Pollen, germination, potassium channel, proton pump, voltage-clamp  相似文献   

3.
Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35–55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.  相似文献   

4.
Activation of K+-Channel in Membrane Excitation of Nitella axilliformis   总被引:1,自引:0,他引:1  
Two processes of the K+ channel activation in plasma membraneexcitation are suggested for Nitella axilliformis. One is relatedto the repolarizing process in the action potential and theother to the after-hyperpolarization (AH). Extra- and intracellulartetraethylammonium (TEA+) and extracellular Co2+ prolonged theaction potential, indicating involvement of K+ channel activationin the repolarizing process of the action potential. The following findings showed that AH is caused by K+ channelactivation. First, AH was inhibited by extracellular K+ andRb+ but not by Na+ and Li+. Second, it was not inhibited byintracellular TEA+ but by extracellular TEA+. Third, the membraneconductance increased during AH. Generation of AH was dependenton the level of the resting membrane potential [(Em)rest] whichis affected by the activity of the electrogenic H+ pump. AHwas generated, when (Em)rest was more positive than a criticalvalue, which was supposed to be the equilibrium potential forK+ across the plasma membrane. Since extracellular Ca2+ competed with extracellular TEA+ andCo2+ in prolonging the action potential, and sometimes in inhibitingAH, Ca2+ may be involved in the K+ channel activation. (Received June 11, 1983; Accepted September 21, 1983)  相似文献   

5.
Mechanism of Postinhibitory Rebound in Molluscan Neurons   总被引:1,自引:1,他引:0  
Postinhibitory rebound (PIR) is an intrinsic property of manyneurons but the underlying mechanism is not well understood.We studied PIR and its relationship to spike adaptation in B-cellsisolated from the buccal ganglia of Aplysia. These neurons exhibitPIR following inhibitory synaptic input and following directmembrane hyperpolarization. Hyperpolarizing and depolarizingvoltage clamp pulses from the resting potential evoke slow changesin membrane current that persist in the form of tail currentsfollowing the pulses. A subtraction method was used to isolateslow tail currents for study. Current-voltage measurements indicatethat slow outward tail currents following depolarizing pulsesresult from increases in membrane conductance, while inwardtail currents following hyperpolarizations to –50 and–60 mV result from conductance decreases. The reversalpotential of both outward and inward tail current is between–60 and –70 mV. Tail currents activated by pulsesmore positive than –60 mV are sensitive to the externalK+ concentration and blocked by injection of Cs+ and TEA. WhenCa2+ influx is prevented by bathing cells in Ca2+ free salineor by adding Co2+ or Ni2+, the tail currents are reduced buta significant fraction of the current is insensitive to thesetreatments. More negative conditioning pulses activate a secondcomponent of inward tail current that is weakly sensitive toK+ but more strongly effected by substitution of N-methyl glucamineor Li+ for external Na+. We conclude that both PIR and adaptationresult from slow changes in a voltage dependent, non-inactivatingK+ conductance that is active at voltages near the resting potentialand is not tightly coupled to Ca2+ influx. In addition, a secondinward current is activated by large hyperpolarizing pulsesthat results from an increase in Na+ and K+ conductance. Thissecond process is likely to contribute to PIR under particularcircumstances.  相似文献   

6.
TALK-1a, originally isolated from human pancreas, is a member of the tandem-pore K+ channel family. We identified and characterized three novel splice variants of TALK-1 from human pancreas. The cDNAs of TALK-1b, TALK-1c, and TALK-1d encode putative proteins of 294, 322, and 262 amino acids, respectively. TALK-1a and TALK-1b possessed all four transmembrane segments, whereas TALK-1c and TALK-1d lacked the fourth transmembrane domain because of deletion of exon 5. Northern blot analysis showed that among the 15 tissues examined, TALK-1 was expressed mainly in the pancreas. TALK-1a and TALK-1b, but not TALK-1c and TALK-1d, could be functionally expressed in COS-7 cells. Like TALK-1a, TALK-1b was a K+-selective channel that was active at rest. Single-channel openings of TALK-1a and TALK-1b were extremely brief such that the mean open time was <0.2 ms. In symmetrical 150 mM KCl, the apparent single-channel conductances of TALK-1a and TALK-1b were 23 ± 3 and 21 ± 2 pS at –60 mV and 11 ± 2 and 10 ± 2 pS at +60 mV, respectively. TALK-1b whole cell current was inhibited 31% by 1 mM Ba2+ and 71% by 1 mM quinidine but was not affected by 1 mM tetraethylammonium, 1 mM Cs+, and 100 µM 4-aminopyridine. Similar to TALK-1a, TALK-1b was sensitive to changes in external pH. Acid conditions inhibited and alkaline conditions activated TALK-1a and TALK-1b, with a K1/2 at pH 7.16 and 7.21, respectively. These results indicate that at least two functional TALK-1 variants are present and may serve as background K+ currents in certain cells of the human pancreas. tandem-pore potassium channel; background potassium channel; pancreas; pH  相似文献   

7.
Volatileanesthetics modulate the function of various K+ channels.We previously reported that isoflurane induces an increase inmacroscopic currents and a slowing down of current deactivation ofShaker H4 IR K+ channels. To understand thesingle-channel basis of these effects, we performed nonstationary noiseanalysis of macroscopic currents and analysis of single channels inpatches from Xenopus oocytes expressing Shaker H4IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the timecourse of tail currents. Noise analysis of currents (70 mV) revealed anincrease in unitary current (~17%) and maximum open probability(~20%). Single-channel conductance was larger (~20%), and openingevents were more stable, in isoflurane. Tail-current slow timeconstants increased by 41% and 136% in 1.2% and 2.5% isoflurane,respectively. Our results show that, in a manner consistent withstabilization of the open state, isoflurane increased the macroscopicconductance of Shaker H4 IR K+ channels byincreasing the single-channel conductance and the open probability.

  相似文献   

8.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

9.
The effects ofMg2+ andBa2+ on single-channel propertiesof the inositol 1,4,5-trisphosphate receptor(IP3R) were studied by patch clampof isolated nuclei from Xenopusoocytes. In 140 mM K+ theIP3R channel kinetics and presenceof conductance substates were similar over a range (0-9.5 mM) offree Mg2+. In 0 mMMg2+ the channel current-voltage(I-V) relation was linear withconductance of ~320 pS. Conductance varied slowly and continuouslyover a wide range (SD  60 pS) and sometimes fluctuated during single openings. The presence of Mg2+ oneither or both sides of the channel reduced the current (blocking constant ~0.6 mM in symmetricalMg2+), as well as the range ofconductances observed, and made the I-V relation nonlinear (slopeconductance ~120 pS near 0 mV and ~360 pS at ±70 mV insymmetrical 2.5 mM Mg2+).Ba2+ exhibited similar effects onchannel conductance. Mg2+ andBa2+ permeated the channel with aratio of permeability of Ba2+ toMg2+ toK+ of 3.5:2.6:1. These resultsindicate that divalent cations induce nonlinearity in theI-V relation and reduce current by amechanism involving permeation block of theIP3R due to strong binding to site(s) in the conduction pathway. Furthermore, stabilization ofconductance by divalent cations reveals a novel interaction between thecations and the IP3R.

  相似文献   

10.
Microsomal membranes from rye (Secale cereale L.) roots wereseparated by isopycnic sucrose density gradient centrifugation.The ion channels present in gradient fractions were assayedby reconstitution into planar 1-palmitoyl-2-oleoyl phosphatidylethanolaminebilayers (PLB) and the distributions of ion channel activitieswere compared with membrane markerenzyme activities. A numberof ion channel activities were observed and could be distinguishedon the combined bases of their conductance, selectivity, kineticsand pharmacology. A voltage-dependent maxi (498 pS) cation-channel,a voltage-dependent 199-pS cationchannel, 48-pS and 18-pS K+channels, and a 148-pS Cl channel (all unitary conductancesdetermined in asymmetrical cis trans 325:100mM KCl) colocalizedwith the plasma membrane marker-enzyme, vanadatesensitive ATPase.A weakly K +-selective (108 pS) channel, a 1249-pS cation-channeland a 98-pS K + channel colocalized with the tonoplast markerenzyme,nitrate-sensitive ATPase. A 706-pS K+ channel colocalized withthe expected distribution of intact plastids and a 38-pS Clchannel colocalized with either plastid or ER membranes. Themembrane location of several other channels including a hypervoltage-sensitivemaxi (497 pS) cation-channel, a 270-pS K+ channel, an 8-pS K+channel and a 4-pS K+ channel was equivocal, but they were tentativelyassigned to the Golgi. Thus, the plasma membrane and tonoplastorigin of ion channels previously characterized following theincorporation of plasma membrane prepared by aqueous-polymertwo-phase partitioning or tonoplast derived from isolated vacuolesinto PLB was confirmed and the ion channel complement of previouslyunassayed membranes was defined. This demonstrates the usefulnessof PLB in identifying and characterizing ion channels from plantcell membranes, in particular, those of membranes which areinaccessible to patch-clamp electrodes. Key words: Chloride (Cl) channel, potassium (K+) channel, planar lipid bilayer, root, rye, Secale cerealeL.  相似文献   

11.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

12.
Caesium (Cs+) is a potentially toxic mineral element that isreleased into the environment and taken up by plants. AlthoughCs+ is chemically similar to potassium (K+), and much is knownabout K+ transport mechanisms, it is not clear through whichK+ transport mechanisms Cs+ is taken up by plant roots. In thisstudy, the role of AtHAK5 in high affinity K+ and Cs+ uptakewas characterized. It is demonstrated that AtHAK5 is localizedto the plasma membrane under conditions of K+ deprivation, whenit is expressed. Growth analysis showed that AtHAK5 plays arole during severe K+ deprivation. Under K+-deficient conditionsin the presence of Cs+, Arabidopsis seedlings lacking AtHAK5had increased inhibition of root growth and lower Cs+ accumulation,and significantly higher leaf chlorophyll concentrations thanwild type. These data indicate that, in addition to transportingK+ in planta, AtHAK5 also transports Cs+. Further experimentsshowed that AtHAK5 mediated Cs+ uptake into yeast cells andthat, although the K+ deficiency-induced expression of AtHAK5was inhibited by low concentrations of NH  相似文献   

13.
The pharmacology of the maxi cation channel in the plasma membraneof rye (Secale cereale L.) root cells was studied followingits incorporation into planar lipid bilayers. The channel wasinhibited by ruthenium red, diltiazem, verapamil, and quinineat micromolar concentrations and TEA+ at millimolar concentrations. Key words: Calcium (Ca2+, cation channel, inhibitors, planar lipid bilayer, plasma membrane  相似文献   

14.
Mice are useful animal models to study pathogenic mechanisms involved in pulmonary vascular disease. Altered expression and function of voltage-gated K+ (KV) channels in pulmonary artery smooth muscle cells (PASMCs) have been implicated in the development of pulmonary arterial hypertension. KV currents (IK(V)) in mouse PASMCs have not been comprehensively characterized. The main focus of this study was to determine the biophysical and pharmacological properties of IK(V) in freshly dissociated mouse PASMCs with the patch-clamp technique. Three distinct whole cell IK(V) were identified based on the kinetics of activation and inactivation: rapidly activating and noninactivating currents (in 58% of the cells tested), rapidly activating and slowly inactivating currents (23%), and slowly activating and noninactivating currents (17%). Of the cells that demonstrated the rapidly activating noninactivating current, 69% showed IK(V) inhibition with 4-aminopyridine (4-AP), while 31% were unaffected. Whole cell IK(V) were very sensitive to tetraethylammonium (TEA), as 1 mM TEA decreased the current amplitude by 32% while it took 10 mM 4-AP to decrease IK(V) by a similar amount (37%). Contribution of Ca2+-activated K+ (KCa) channels to whole cell IK(V) was minimal, as neither pharmacological inhibition with charybdotoxin or iberiotoxin nor perfusion with Ca2+-free solution had an effect on the whole cell IK(V). Steady-state activation and inactivation curves revealed a window K+ current between –40 and –10 mV with a peak at –31.5 mV. Single-channel recordings revealed large-, intermediate-, and small-amplitude currents, with an averaged slope conductance of 119.4 ± 2.7, 79.8 ± 2.8, 46.0 ± 2.2, and 23.6 ± 0.6 pS, respectively. These studies provide detailed electrophysiological and pharmacological profiles of the native KV currents in mouse PASMCs. KV channels  相似文献   

15.
A depolarization-activated outwardly-rectifying channel (OR),most likely involved in the passive release of K+ from the rootsymplasm into the stelar apoplast (for subsequent transportto the shoot via the xylem vessels), has been characterizedin the plasma membrane of maize root stelar cells (Roberts andTester, 1995). In the present study, the selectivity of thischannel was further characterized using single channel current-voltagecurves generated using a voltage ramp protocol. This protocolpermitted the accurate and unambiguous measurement of the reversalpotentials of currents resulting from single channel openings.Using the voltage ramp protocol, it was shown that the OR allowsboth K+ efflux and Ca2+ influx at potentials positive of EKand negative of ECa. The OR had a PCa/PK of 1.72–0.21decreasing as extracellular Ca2+ was increased. The permeabilityof the OR for monovalent cations other than K+ was also investigated.In biionic conditions, a relative permeability sequence of was determined (i.e. Eisenman sequenceIV). The physiological implications of the selectivity of theOR are discussed. Key words: Maize roots, K+ channel selectivity, Ca2+ permeation  相似文献   

16.
Patch clamping whole-cell recording techniques were applied to study the inward K+ -channels inArabidopsis root cortex cells. The inward K+ -channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective for K+ ions over Na+ ions. The channel activity was significantly inhibited by the external TEA+ or Ba2+. The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+ -currents. The possible association between the channel selectivity to K+ and Na+ ions and plant salt-tolerance was also discussed.  相似文献   

17.
Cell-attached and cell-free configurations of the patch-clamptechnique were used to investigate the conductive properties andregulation of the major K+channels in the basolateral membrane of outer hair cells freshly isolated from the guinea pig cochlea. There were two majorvoltage-dependent K+ channels. ACa2+-activatedK+ channel with a high conductance(220 pS,PK/PNa = 8) was found in almost 20% of the patches. The inside-out activityof the channel was increased by depolarizations above 0 mV andincreasing the intracellular Ca2+concentration. External ATP or adenosine did not alter thecell-attached activity of the channel. The open probability of theexcised channel remained stable for several minutes without rundown andwas not altered by the catalytic subunit of protein kinase A (PKA)applied internally. The most frequentK+ channel had a low conductanceand a small outward rectification in symmetricalK+ conditions (10 pS for inwardcurrents and 20 pS for outward currents, PK/PNa = 28). It was found significantly more frequently in cell-attached andinside-out patches when the pipette contained 100 µM acetylcholine. It was not sensitive to internalCa2+, was inhibited by4-aminopyridine, was activated by depolarization above 30 mV,and exhibited a rundown after excision. It also had a slow inactivationon ensemble-averaged sweeps in response to depolarizing pulses. Thecell-attached activity of the channel was increased when adenosine wassuperfused outside the pipette. This effect also occurred with permeantanalogs of cAMP and internally applied catalytic subunit of PKA. Bothchannels could control the cell membrane voltage of outer hair cells.

  相似文献   

18.
Darkening after illumination induces a transient hyperpolarizationof the plasma membrane of the unicellular green alga Eremosphaeraviridis de Bary. With electro-physiological methods, in particularthe two electrode voltage-clamp technique, we investigated theion fluxes involved in this transient potential change (TP).The question was whether other ion currents besides those carriedby the known Ca2+-dependent K+ channel take part in this actionpotential-like, but hyperpolarizing, response. At maximum hyperpolarizationvoltage-clamp measurements resulted in ‘N-shaped’I/V curves, known from other botanical systems. The differentinstantaneous current components of the N-shaped I/V curvesoccurred at different times during a single transient potentialchange (TP). Substitution of alkali metal cations in the bathingsolution by NMG/NO3 showed that the inward currents in the I/Vcurves were not carried by an influx of K+ into the cytoplasm.The voltage amplitude of the TP not only depended on the externalK+ concentration, but also on the Mg2+ concentration in thebathing solution. Increasing Mg2+ concentrations shifted themembrane potential in the top of the TP in the direction ofthe Nernst potential of Mg2+ and resulted in an increased inwardcurrent component of the N-shaped I/V curves. Another currentcomponent was found to be carried not by cations but by an effluxof anions. It was a voltage-dependent component with a maximumcurrent amplitude at voltages of about –220 to –240mV, and was blocked by the anion channel inhibitors anthracen-9-carboxylicacid (A9C), (5-nitro-2-3-phenylpropylamino) benzoic acid (NPPB)and ZnCI2. Based on these data a model is proposed which explainsthe N-shape of the I/V curves observed during the transientpotential change of the alga E. viridis by the combination ofan inward cation current with an inward anion current and theoutward cation current carried by the Ca2+-dependent K+ channels. Key words: Anion current, cation current, Eremosphaera viridis, potassium channel, voltage-clamp  相似文献   

19.
Internal Cs+, Na+, Li+, and, to a lesser degree, Rb+ interfere with outward current through the K pores in voltage clamped squid axons. Addition of 100 mM NaF to the perfusion medium cuts outward current for large depolarizations about in half, and causes negative conductance over a range of membrane voltages. For example, suddenly reducing membrane potential from +100 to +60 mv increases the magnitude of the outward current. Internal Cs+ and, to a small extent, Li+, also cause negative conductance. Na+ ions permeate at least 17 times less well through the K pores than K+, and Cs+ does not permeate measurably. The results strongly suggest that K pores have a wide and not very selective inner mouth, which accepts K+, Na+, Li+, Cs+, tetraethylammonium ion (TEA+), and other ions. The diameter of the mouth must be at least 8 A, which is the diameter of a TEA+ ion. K+ ions in the mouths probably have full hydration shells. The remainder of the pore is postulated to be 2.6–3.0 A in diameter, large enough for K+ and Rb+ but too small for Cs+ and TEA+. We postulate that Na+ ions do not enter the narrower part of the pore because they are too small to fit well in the coordination cages provided by the pore as replacements for the water molecules surrounding an ion.  相似文献   

20.
The corpus callosum (CC) is the main white matter tract in the brain and is involved in interhemispheric communication. Using the whole-cell voltage-clamp technique, a study was made of K+-currents in primary cultured astrocytes from the CC of newborn rats. These cells were positive to glial fibrillary acidic protein after culturing in Dulbecco’s Modified Eagle Medium (> 95% of cells) or in serum-free neurobasal medium with G5 supplement (> 99% of cells). Astrocytes cultured in either medium displayed similar voltage-activated ion currents. In 81% of astrocytes, the current had a transient component and a sustained component, which were blocked by 4-aminopyridine and tetraethylammonium, respectively; and both had a reversal potential of ?66 mV, indicating that they were carried by K+ ions. Based on the Ba2+-sensitivity and activation kinetics of the K+-current, two groups of astrocytes were discerned. One group (55% of cells) displayed a strong Ba2+ blockade of the K+-current whose activation kinetics, time course of decay, and the current-voltage relationship were modified by Ba2+. This current was greatly blocked (52%) by Ba2+ in a voltage-dependent way. Another group (45% of cells) presented weak Ba2+-blockade, which was only blocked 24% by Ba2+. The activation kinetics and time course of decay of this current component were unaffected by Ba2+. These results may help to understand better the roles of voltage-activated K+-currents in astrocytes from the rat CC in particular and glial cells in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号