首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
CTLA-4 plays an important role in the down-regulation of activated T cells and in the establishment of peripheral tolerance. It has been hypothesized that CTLA-4 on the cell surface signals directly into T cells during primary immune responses, resulting in intrinsic T cell down-regulation. It is not known, however, whether CTLA-4 directly inhibits the less intense activating signals received by autoreactive T cells in the periphery. We investigated whether CTLA-4 acts intrinsically upon self-reactive cells in vivo, or whether it inhibits autoreactive cells indirectly, in a non-cell autonomous manner. The adoptive transfer of CTLA-4-deficient splenocytes or Thy 1(+) cells into recombinase-activating gene 2-deficient mice resulted in fatal inflammation and tissue destruction similar to that seen in CTLA-4-deficient mice. When an equivalent number of splenocytes or Thy 1(+) cells from wild-type animals was transferred with the CTLA-4-deficient cells, recipient mice survived indefinitely. Since CTLA-4 was absent in the T cells responsible for the inflammatory phenotype, the down-regulation of these autoreactive cells must have been facilitated indirectly by wild-type Thy 1(+) cells. In addition, a rapid reduction in the ratio of CTLA-4-deficient to wild-type cells was observed. We propose two possible indirect mechanisms by which CTLA-4 may function in the establishment and maintenance of peripheral tolerance.  相似文献   

3.
CTLA-4 is not required for induction of CD8(+) T cell anergy in vivo.   总被引:2,自引:0,他引:2  
Recent studies of T cell anergy induction have produced conflicting conclusions as to the role of the negative regulatory receptor, CTLA-4. Several in vivo models of tolerance have implicated the interaction of CTLA-4 and its ligands, B7.1 and B7.2, as an essential step in induction of anergy, while results from a number of other systems have indicated that signals from the TCR/CD3 complex alone are sufficient to induce T cell unresponsiveness. One explanation for this disparity is that the requirements for anergy induction depend closely on the details of the system: in vivo vs in vitro, route of stimulus administration, naive vs memory cells, CD4(+) vs CD8(+) cells, etc. To test this possibility, we established an in vivo anergy model using mice transgenic for the 2C TCR on a recombination-activating gene-2-deficient background, that either express or lack the CTLA-4 molecule. This system provides us with a very homogeneous pool of naive Ag-specific CD8(+) T cells, allowing us to control some of the conditions mentioned above. We found that T cells from CTLA-4-deficient mice were anergized by injections of soluble antigenic peptide as efficiently as were CTLA-4-expressing cells. These results indicate that CTLA-4 is not universally required for in vivo T cell anergy induction and may point to distinctions between regulation of peripheral tolerance in CD4(+) and CD8(+) T cells.  相似文献   

4.
B7-independent inhibition of T cells by CTLA-4   总被引:4,自引:0,他引:4  
CTLA-4 is an inhibitory molecule that regulates T cell expansion and differentiation. CTLA-4 binding to B7-1/B7-2 is believed to be crucial for its inhibitory signal both by competing for CD28 binding to the same ligands and aggregating CTLA-4 to deliver negative signals. In this study, we demonstrate that B7 binding is not essential for CTLA-4 activity. CTLA-4 knockout T cells are hyperresponsive compared with wild-type T cells in B7-free settings. Expression of a B7-nonbinding CTLA-4 mutant inhibited T cell proliferation, cytokine production, and TCR-mediated ERK activation in otherwise CTLA-4-deficient T cells. Finally, transgenic expression of the ligand-nonbinding CTLA-4 mutant delayed the lethal lymphoproliferation observed in CTLA-4-deficient mice. These results suggest that ligand binding is not essential for the CTLA-4 function and supports an essential role for CTLA-4 signaling during T cell activation.  相似文献   

5.
Induction of T cell anergy in the absence of CTLA-4/B7 interaction   总被引:11,自引:0,他引:11  
Immunologic tolerance in T lymphocytes is maintained through both thymic and peripheral contributions. One peripheral tolerance mechanism is the induction of T cell anergy, a form of nonresponsiveness resulting from incomplete T cell activation, such as stimulation through the TCR in the absence of costimulation. Recent reports have suggested that engagement of the inhibitory receptor CTLA-4 by its B7 ligand is critical for the initiation of anergy. We tested the importance of CTLA-4 in anergy induction in primary T cells with an in vitro anergy system. Using both CTLA-4/B7-blocking agents and CTLA-4-deficient T cells, we found that T cell anergy can be established in the absence of CTLA-4 expression and/or function. Even in the absence of CTLA-4 signal transduction, T cells activated solely through TCR ligation lose the ability to proliferate as a result of autocrine IL-2 production upon subsequent receptor engagement. Thus, CTLA-4 signaling is not required for the development of T cell anergy.  相似文献   

6.
CD4(+)CD25(+) regulatory T cells (Tregs) suppress immunity to infections and tumors as well as autoimmunity and graft-vs-host disease. Since Tregs constitutively express CTLA-4 and activated T cells express B7-1 and B7-2, it has been suggested that the interaction between CTLA-4 on Tregs and B7-1/2 on the effector T cells may be required for immune suppression. In this study, we report that autopathogenic T cells from B7-deficient mice cause multiorgan inflammation when adoptively transferred into syngeneic RAG-1-deficient hosts. More importantly, this inflammation is suppressed by adoptive transfer of purified wild-type (WT) CD4(+)CD25(+) T cells. WT Tregs also inhibited lymphoproliferation and acquisition of activation markers by the B7-deficient T cells. An in vitro suppressor assay revealed that WT and B7-deficient T cells are equally susceptible to WT Treg regulation. These results demonstrate that B7-deficient T cells are highly susceptible to immune suppression by WT Tregs and refute the hypothesis that B7-CTLA-4 interaction between effector T cells and Tregs plays an essential role in Treg function.  相似文献   

7.
The membrane protein T cell immune response cDNA 7 (TIRC7) was recently identified and was shown to play an important role in T cell activation. To characterize the function of TIRC7 in more detail, we generated TIRC7-deficient mice by gene targeting. We observed disturbed T and B cell function both in vitro and in vivo in TIRC7(-/-) mice. Histologically, primary and secondary lymphoid organs showed a mixture of hypo-, hyper-, and dysplastic changes of multiple lymphohemopoietic compartments. T cells from TIRC7(-/-) mice exhibited significantly increased proliferation and expression of IL-2, IFN-gamma, and IL-4 in response to different stimuli. Resting T cells from TIRC7(-/-) mice exhibited decreased CD62L, but increased CD11a and CD44 expression, suggesting an in vivo expansion of memory/effector T cells. Remarkably, activated T cells from TIRC7(-/-) mice expressed lower levels of CTLA-4 in comparison with wild-type cells. B cells from TIRC7-deficient mice exhibited significantly higher in vitro proliferation following stimulation with anti-CD40 Ab or LPS plus IL-4. B cell hyperreactivity was reflected in vivo by elevated serum levels of various Ig classes and higher CD86 expression on B cells. Furthermore, TIRC7 deficiency resulted in an augmented delayed-type hypersensitivity response that was also reflected in increased mononuclear infiltration in the skin obtained from TIRC7-deficient mice food pads. In summary, the data strongly support an important role for TIRC7 in regulating both T and B cell responses.  相似文献   

8.
The peripheral mechanisms that regulate the size and the repertoire of the T cell compartment during recovery from a lymphopenic state are incompletely understood. In particular, the role of costimulatory signals, such as those provided by CD28, which have a critical importance for the immune response toward foreign Ags in nonlymphopenic animals, has been unclear in lymphopenia-induced proliferation (LIP). In this study, we show that accumulation of highly divided CD4 T cells characterized by great potential to make IFN-gamma is significantly delayed in the absence of B7:CD28 costimulation during LIP. Furthermore, CD28-sufficient CD4 T cells show great competitive advantage over CD28-deficient CD4 T cells when transferred together into the same lymphopenic hosts. Administration of CTLA-4-Ig removed this competitive advantage. Interestingly, CTLA-4-Ig treatment resulted in modest inhibition of LIP by CD28-deficient responders, suggesting that some of its effects may be independent of mere B7 blockade.  相似文献   

9.
CTLA-4 is expressed on the surface of activated T cells and negatively regulates T cell activation. Because a low-level expression of CTLA-4 on the cell surface is sufficient to induce negative signals in T cells, the surface expression of CTLA-4 is strictly regulated. We previously demonstrated that the association of CTLA-4 with the clathrin-associated adaptor complex AP-2 induces internalization of CTLA-4 and keeps the surface expression low. However, the mechanism to induce high expression on the cell surface upon stimulation has not yet been clarified. To address this, we investigated the intracellular dynamics of CTLA-4 by analyzing its localization and trafficking in wild-type and mutant CTLA-4-transfected Th1 clones. CTLA-4 is accumulated in intracellular granules, which we identified as lysosomes. CTLA-4 is degraded in lysosomes in a short period, and the degradation process may serve as one of the mechanisms to regulate CTLA-4 expression. Upon TCR stimulation, CTLA-4-containing lysosomes are secreted as proven by the secretion of cathepsin D and beta-hexosaminidase in parallel with the increase of surface expression of CTLA-4 and lysosomal glycoprotein 85, a lysosomal marker. These results suggest that the cell surface expression of CTLA-4 is up-regulated upon stimulation by utilizing a mechanism of secretory lysosomes in CD4(+)T cells.  相似文献   

10.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

11.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

12.
Mice deficient for the expression of CTLA-4 develop a lethal lymphoproliferative syndrome and multiorgan inflammation leading to death at about 4 wk of age. Here we show that RAG2-deficient mice reconstituted with CTLA-4-deficient bone marrow do not develop a lymphoproliferative syndrome despite lymphocyte infiltration mainly into pericardium and liver. Moreover, RAG2-deficient mice reconstituted with a mixture of normal and CTLA-4-deficient bone marrow remain healthy and do not develop any disease. Thus, the lethal disease observed in CTLA-4-deficient mice is not T cell autonomous and can be prevented by factors produced by normal T cells.  相似文献   

13.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

14.
Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adapter protein that associates with the cytoplasmic tail of OX40, may play a critical role in OX40-mediated signal transduction. To investigate the in vivo role of TRAF2 in OX40-mediated generation of Ag-specific memory T cells, we bred OVA-specific TCR transgenic mice to TRAF2 dominant-negative (TRAF2 DN) mice. Following Ag stimulation and OX40 engagement of TRAF2 DN T cells in vivo, the number of long-lived OVA-specific T cells and effector T cell function was dramatically reduced when compared with wild-type T cells. We also demonstrate that CTLA-4 is down-regulated following OX40 engagement in vivo and the OX40-specific TRAF2 DN defect was partially overcome by CTLA-4 blockade in vivo. The data provide evidence that TRAF2 is linked to OX40-mediated memory T cell expansion and survival, and point to the down-regulation of CTLA-4 as a possible control element to enhance early T cell expansion through OX40 signaling.  相似文献   

15.
Cytokine receptor signaling and costimulatory receptor signaling play distinct roles in T cell activation. Nonetheless, deficiencies in either of these pathways lead to seemingly similar phenotypes of impaired T cell homeostasis. A dramatic expansion of CD4(+) peripheral T cells with an activated phenotype has been observed in both Janus kinase (Jak) 3-deficient and CTLA-4-deficient mice. Despite these similarities, the mechanisms driving T cell expansion may be distinct. To address this possibility, we examined the TCR repertoire of peripheral T cells in Jak3(-/-) and CTLA-4(-/-) mice using complementarity-determining region 3 spectratype analysis. Interestingly, a restricted and highly biased TCR repertoire was observed in the Jak3(-/-) T cells, strongly supporting a role for foreign Ag in the activation and expansion of these cells. In contrast, CTLA-4(-/-) T cells had a diverse and unbiased TCR repertoire, suggestive of a universal, Ag-independent mechanism of activation and expansion. These findings provide insight into the diverse mechanisms controlling T cell homeostasis.  相似文献   

16.
17.
CTLA-4 is known as a central inhibitor of T cell responses. It terminates T cell activation and proliferation and induces resistance against activation induced cell death. However, its impact on memory formation of adaptive immune responses is still unknown. In this study, we demonstrate that although anti-CTLA-4 mAb treatment during primary immunization of mice initially enhances the number of IFN-γ-producing CD4(+) T cells, it does not affect the size of the memory pool. Interestingly, we find that the CTLA-4 blockade modulates the quality of the memory pool: it decreases the amount of specialized "multifunctional" memory CD4(+) T cells coproducing IFN-γ, TNF-α, and IL-2 in response to Ag. The reduction of these cells causes an immense decrease of IFN-γ-producing T cells after in vivo antigenic rechallenge. Chimeric mice expressing CTLA-4-competent and -deficient cells unmask, which these CTLA-4-driven mechanisms are mediated CD4(+) T cell nonautonomously. In addition, the depletion of CD25(+) T cells prior to the generation of Ag-specific memory cells reveals that the constitutively CTLA-4-expressing natural regulatory T cells determine the quality of memory CD4(+) T cells. Taken together, these results indicate that although the inhibitory molecule CTLA-4 damps the primary immune response, its engagement positively regulates the formation of a high-quality memory pool equipped with multifunctional CD4(+) T cells capable of mounting a robust response to Ag rechallenge.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

19.
The CTLA-4 pathway is a key regulator of T cell activation and a critical failsafe against autoimmunity. Although early models postulated that CTLA-4 transduced a negative signal, in vivo evidence suggests that CTLA-4 functions in a cell-extrinsic manner. That multiple cell-intrinsic mechanisms have been attributed to CTLA-4, yet its function in vivo appears to be cell-extrinsic, has been an ongoing paradox in the field. Although CTLA-4 expressed on conventional T cells (Tconv) can mediate inhibitory function, it is unclear why this fails to manifest as an intrinsic effect. In this study, we show that Tconv-expressed CTLA-4 can function in a cell-extrinsic manner in vivo. CTLA-4(+/+) T cells, from DO11/rag(-/-) mice that lack regulatory T cells, were able to regulate the response of CTLA-4(-/-) T cells in cotransfer experiments. This observation provides a potential resolution to the above paradox and suggests CTLA-4 function on both Tconv and regulatory T cells can be achieved through cell-extrinsic mechanisms.  相似文献   

20.
Natural engagement of CTLA-4 on host B7 limits T cell activation. We hypothesized that therapeutic cross-linking of CTLA-4 in vivo may further inhibit T cell function and prevent allograft rejection. However, none of the currently available CTLA-4-binding reagents have ligating properties when injected in vivo. The observation that surface-immobilized anti-CTLA-4 mAb inhibits T cell activation in vitro prompted us to develop a membrane-bound single-chain anti-CTLA-4 Ab (7M). To model whether tissue expression of 7M could suppress allograft rejection, we examined the ability of H-2L(d)-specific TCR-transgenic T cells to reject 7M-expressing allogeneic tumor cells injected s.c. Expression of 7M significantly inhibited allogeneic rejection in mice that received CTLA-4(+/+) but not CTLA-4(-/-) T cells. Furthermore, CTLA-4(+/+) T cells that had encountered 7M-expressing tumors in vivo acquired defects in cytokine production and cytotoxicity. Thus, deliberate ligation of CTLA-4 in vivo potently inhibits allogeneic T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号