首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.  相似文献   

2.
We present results of the first comprehensive proteomic analysis of the outer membrane of the bacterial phytopathogen Dickeya dadantii strain 3937 and its response to virulence-contributing factors such as host plant extract, acidic stress, and iron starvation. We analyzed the carbonate-insoluble membrane fractions, which are highly enriched for outer membrane proteins, using two-dimensional electrophoresis and identified the proteins by MALDI-TOF MS. Forty unique proteins were identified, some of which were differentially expressed under the above conditions.  相似文献   

3.
4.
Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.  相似文献   

5.
6.
The entry of oligogalacturonates into Dickeya dadantii occurs through the specific channel KdgM. The genome of the bacterium encodes a second member of this family of outer membrane proteins, KdgN. We showed that this protein is also involved in the uptake of oligogalacturonates. When KdgN was reconstituted in proteoliposomes, it formed channels with a conductance of about 450 pS at a positive potential. These channels had weak anionic selectivity. The regulation of kdgN is complex, and five genes controlling the expression of kdgN have been identified: kdgR, pecS, ompR, hns, and crp. Moreover, kdgN was regulated by growth phase but only when bacteria were grown in rich medium. Most of these regulators of kdgN also control kdgM expression, but some of them regulate kdgM in the opposite manner: while PecS and OmpR are repressors of kdgM, they are activators of kdgN. This pattern resembles the regulation of the Escherichia coli general porins OmpF and OmpC, but such opposite regulation of two specific outer membrane channels has never been described before. KdgN may allow the bacteria to collect oligogalacturonates under saprophytic conditions, when virulence genes, including kdgM, are not expressed.  相似文献   

7.
8.
9.
10.
Expanded linkage map of Erwinia chrysanthemi strain 3937   总被引:14,自引:7,他引:7  
In this paper we describe the chromosomal location of various loci in Erwinia chrysanthemi strain 3937. Auxotrophic markers were obtained by chemical mutagenesis, antibiotic resistances were isolated spontaneously and mutations in sugar utilization were obtained by means of Mu insertions. These markers were located on the genetic linkage map of strain 3937 by using a conjugative system mediated by RP4::mini-Mu plasmids which permitted transfer of genetic material from any point of origin. The location of these markers was compared to that of previously located mutations. Many genes involved in pectinolysis were also located on the E. chrysanthemi 3937 map. These results permitted us to present a new genetic map containing 61 markers distributed over 34 widely scattered loci on the chromosome. Some pairs of markers giving high cotransfer frequencies were tested for cotransduction mediated by the generalized transducing phage phi-EC2; nine cotransducing pairs were found. It appears that the chromosomal locations of many of these loci are quite different to those of the well-known enterobacterium Escherichia coli but seem similar to those described for other E. chrysanthemi strains.  相似文献   

11.
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.Osmoregulated periplasmic glucans (OPGs) are general periplasmic constituents of the envelope of most proteobacteria. Their common features are that glucose is the sole constituent sugar, and their abundance in the periplasm increases as the osmolarity of the medium decreases. In Enterobacteriaceae and related bacteria, the glucose backbone synthesis is catalyzed by both products of the opgGH operon (5). Studies of several bacterial pathogens, including Dickeya dadantii, showed the importance of OPGs for virulence (4, 5, 18, 25, 26).Dickeya dadantii is a member of the pectinolytic erwiniae causing soft rot disease in a wide range of plant species (33). The virulence of D. dadantii is associated with the synthesis and the secretion of a set of plant cell wall-degrading enzymes (pectinases, cellulases, and proteases) causing maceration of the plant tissues (22). D. dadantii synthesize OPGs containing 5 to 12 glucose units joined by β,1-2 linkages and branched by β,1-6 linkages that are substituted with succinyl and acetyl residues (11). The opgG or opgH mutants unable to synthesize OPGs show a pleiotropic phenotype. They are nonvirulent on chicory leaves and potato tubers, and synthesis and secretion of pectate-lyases, cellulases, and proteases are reduced (32). Motility is severely reduced, while exopolysaccharide secretion is increased (mucoid phenotype) (32). Data suggest that the opg mutants are impaired in perception of the environment, which prevents D. dadantii from recognizing host cells, suggesting a possible dysfunction of phosphorelay signaling pathways, major systems required for environmental perception in bacteria (6). In these systems, upon stimuli, a kinase/phosphatase sensor autophosphorylates and transfers the phosphate group to a cytoplasmic regulator which modulates expression of target genes.Here, we show that mutations in the rcsC and rcsB genes, encoding, respectively, the sensor and the cognate regulator of the RcsCD-RcsB phosphorelay, suppress several phenotypes of an opgG mutant, including the nonvirulent phenotype on potato tubers. This suggests interactions between the RcsCD-RcsB phosphorelay and OPG molecules and constitutes a first hint at the molecular role of these ubiquitous glycans in virulence.  相似文献   

12.
13.
14.
We present a method for identifying plant-inducible genes of Erwinia chrysanthemi 3937. Mutagenesis was done with the Mu dIIPR3 transposon, which carries a promoterless neomycin phosphotransferase gene (nptI), so upon insertion, the truncated gene can fuse to E. chrysanthemi promoters. Mutants containing insertions in plant-inducible genes were selected for their sensitivity to kanamycin on minimal plates and for their acquired resistance to this antibiotic when an S. ionantha plant extract was added to kanamycin minimal plates. The selection allowed the identification of E. chrysanthemi promoters inducible by host factors present in the S. ionantha plant extract. Using this method, we isolated 30 mutants and characterized 10 of them. Two mutants were defective in cation uptake, one was defective in the galacturonate degradation pathway, and another was altered in the production of the acidic pectate lyase. The functions of the other mutated genes are still unknown, but we show that most of them are involved in pathogenicity.  相似文献   

15.
16.
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant‐pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft‐rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound‐derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF‐0020167 and ABF‐0046680) in the chemotaxis‐driven entry process through plant wounds. Our data suggest that ABF‐0020167 and ABF‐0046680 may be candidate receptors of jasmonic acid and xylose, respectively.  相似文献   

17.
Escherichia coli (2492/pJB4JI) matings with Erwinia chrysanthemi produced kanamycin resistant (Kmr) transconjugants, a majority of which were gentamicin sensitive (Gms). A small proportion (about 0.8%) of the Kmr Gms clones were either auxotrophic or failed to catabolize galacturonate (Gtu). The R plasmid (pJB4JI) DNA was detected in the parent E. coli strain and in a Kmr Gmr transconjugant, but not in Kmr GmsE. chrysanthemi strains carrying Tn5-induced mutations. In Hfr crosses, Kmr (Tn5) was found linked with most mutations. A majority (>95%) of prototrophic recombinants were Kms, except for Leu+ and Arg+ recombinants which were 30 to 50% Kms. Spontaneous revertants were obtained for all markers except car, gtu, lys, thr, and trp. Prototrophic revertants, with the exception of Met+, Leu+, or His+ clones, were Kms. We conclude from both genetic and physical data that Tn5 transposed from pJB4JI into different sites on the chromosome of E. chrysanthemi.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号