首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette membrane transport superfamily and is responsible for multidrug resistance in cancer cells. Currently, there are nine known human MRPs. Distinct from many other members of the ATP-binding cassette superfamily, human MRP1 and four other MRPs have an additional membrane-spanning domain (MSD) with a putative extracellular amino terminus. The functional significance of this additional MSD (MSD1) is currently unknown. To understand the role of MSD1 in human MRP1 structure and function, we studied the amino-terminal 33 amino acids. We found that the amino terminus of human MRP1 has two cysteine residues (Cys(7) and Cys(32)) that are conserved among the five human MRPs that have MSD1. Mutation analyses of the two cysteines in human MRP1 revealed that the Cys(7) residue is critical for the MRP1-mediated drug resistance and leukotriene C(4) transport activity. On the other hand, mutation of Cys(32) reduced only moderately the MRP1 function. The effect of Cys(7) mutation on MRP1 activity appears to be due to the 5-7-fold decrease in the maximal transport rate V(max). We also found that mutation of Cys(7) changed the amino-terminal conformation of MRP1. This conformational change is likely responsible for the decrease in V(max) of LTC(4) transport mediated by the mutant MRP1. Based on these studies, we conclude that the amino terminus of human MRP1 is important and that the Cys(7) residue plays a critical role in maintaining the proper structure and function of human MRP1.  相似文献   

2.
Müller M  Yong M  Peng XH  Petre B  Arora S  Ambudkar SV 《Biochemistry》2002,41(31):10123-10132
To enable cell surface localization of the human multidrug resistance protein (MRP1, ABCC1) and to assess the role of the extracellular domains of this transporter, the FLAG epitope tag was introduced into different extracellular loops of the three membrane-spanning domains (MSDs) of the transporter. We constructed and expressed various partially and fully glycosylation-deficient, FLAG-tagged MRP1 proteins in a Vaccinia virus-based transient expression system, and the cell surface expression level of MRP1 on intact cells was followed by flow cytometry, using the FLAG tag specific monoclonal antibody M2. We also expressed the wild-type MRP1 protein and some of the FLAG-tagged mutants in stably transfected HEK293 cells, and followed the cell surface expression and the transport function of MRP1 both by monitoring the efflux of fluorescent substrate and by their ability to confer resistance to HEK293 transfectants to anticancer agents such as daunorubicin and etoposide. When we inserted the FLAG epitope in extracellular loops of the MSD1 or MSD3, the tag was accessible upon removal of N-glycosylation sites (N --> Q at positions 17, 23, and 1006, respectively), whereas the FLAG epitope placed in the MSD2 was not accessible even after removal of all three N-glycosylation sites, indicating that MSD2 region is deeply buried in the plasma membrane. However, all FLAG tagged MRP1 mutants were expressed at the cell surface to the same extent as the wild-type protein and also exhibited normal transport function. Our results demonstrate that the accessibility of the external FLAG epitope is strongly dependent on the position of the tag and the glycosylation state of the different FLAG-tagged MRP1s, and the conformation of extracellular loops in MSD1 and MDS3 does not appear to contribute to the functional status of MRP1.  相似文献   

3.
Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug, N-(hydrocinchonidin-8'-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C(4), doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides ( approximately 111 and approximately 85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids approximately 900-1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1-900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and approximately 6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP-drug interactions.  相似文献   

4.
Overexpression of some ATP-binding cassette (ABC) membrane transporters such as ABCB1/P-glycoprotein/MDR1 and ABCC1/MRP1 causes multidrug resistance in cancer chemotherapy. It has been thought that half-ABC transporters with one nucleotide-binding domain and one membrane-spanning domain (MSD) likely work as dimers, whereas full-length transporters with two nucleotide-binding domains and two or three MSDs function as monomers. In this study, we examined the oligomeric status of the human full-length ABC transporter ABCC1/MRP1 using several biochemical approaches. We found 1) that it is a homodimer, 2) that the dimerization domain is located in the amino-terminal MSD0L0 (where L0 is loop 0) region, and 3) that MSD0L0 has a dominant-negative function when coexpressed with wild-type ABCC1/MRP1. These findings suggest that ABCC1/MRP1 may exist and function as a dimer and that MSD0L0 likely plays some structural and regulatory functions. It is also tempting to propose that the MSD0L0-mediated dimerization may be targeted for therapeutic development to sensitize ABCC1/MRP1-mediated drug resistance in cancer chemotherapy.  相似文献   

5.
MRP1 is an ABC (or ATP binding cassette) membrane transport protein shown to confer resistance to structurally dissimilar drugs. Studies of MRP1 topology suggested the presence of a hydrophobic N-domain with five potential membrane-spanning domains linked to an MDR1-like core (MSD1-NBD1-L1-MSD2-NBD2) by an intracellular linker domain (L0). MRP1-mediated multidrug resistance is thought to be due to enhanced drug efflux. However, little is known about MRP1-drug interaction and its drug binding site(s). We previously developed several photoreactive probes to study MRP1-drug interactions. In this report, we have used eight MRP1-HA variants that were modified to have hemagglutinin A (HA) epitopes inserted at different sites in MRP1 sequence. Exhaustive in-gel digestion of all IAARh123 photoaffinity-labeled MRP1-HA variants revealed the same profile of photolabeled peptides as seen for wild type MRP1. Photolabeling of the different MRP1-HA variants followed by digestion with increasing concentrations of trypsin or Staphylococcus aureus V8 protease (1:800 to 1:5 w/w) and immunoprecipitation with anti-HA mAb identified two small photolabeled peptides ( approximately 6-7 kDa) from MRP1-HA(574) and MRP1-HA(1222). Based on the location of the HA epitopes in the latter variants together with molecular masses of the two peptides, the photolabeled amino acid residues were localized to MRP1 sequences encoding transmembranes 10 and 11 of MSD1 (Ser(542)-Arg(593)) and transmembranes 16 and 17 of MSD2 (Cys(1205)-Glu(1253)). Interestingly, the same sequences in MRP1 were also photolabeled with a structurally different photoreactive drug, IACI, confirming the significance of transmembranes 10, 11, 16 and 17 in MRP1 drug binding. Taken together, the results in this study provide the first delineation of the drug binding site(s) of MRP1. Furthermore, our findings suggest the presence of common drug binding site(s) for structurally dissimilar drugs.  相似文献   

6.
Multidrug resistance is a serious problem in successful cancer chemotherapy. Studies using model cell lines have demonstrated that overexpression of some members of the ATP-binding cassette (ABC) transporter superfamily, such as ABCC1, causes enhanced efflux and, thus, decreased accumulation of multiple anticancer drugs, which leads to increased cell survival. Unlike most other ABC transporters, ABCC1 has an additional membrane-spanning domain (MSD0) with a putative extracellular amino terminus of 32 amino acids. However, the function of MSD0 and the role of the extracellular amino terminus are largely unknown. In this study, we examined the structural folding and the function of the amino terminus. We found that it has a U-shaped folding with the bottom of the U-structure facing cytoplasm and both ends in extracellular space. We also found that this U-shaped amino terminus probably functions as a gate to regulate the drug transport activity of human ABCC1.  相似文献   

7.
Multidrug resistance in human tumour cells is often associated with increased expression of the 190kDa multidrug resistance protein, MRP1, that belongs to the ATP-binding cassette superfamily of transport proteins. MRP1 is also an efficient transporter of many organic anions. In the present study, we have mapped the epitope of the MRP1-specific murine monoclonal antibody (MAb) MRPm5 to the decapeptide (1063)FFERTPSGNL(1072) located in the cytoplasmic loop (CL6) linking transmembrane helices 13 and 14 in the third membrane spanning domain of the protein. Several amino acids in the cytoplasmic loops of MRP1 have been reported to be important for its transport function; nevertheless, MAb MRPm5 does not inhibit vesicular uptake of the high affinity substrate leukotriene C(4). None of the other MRP1-reactive MAbs described to date map to CL6 of MRP1 which in turn enhances the utility of MAb MRPm5 for both clinical and experimental investigations of this transporter.  相似文献   

8.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

9.
The multidrug resistance proteins P-glycoprotein (Pgp) and MRP1 are drug-efflux pumps. In this study, we compared the nucleotide triphosphatase activities of the isolated N-terminal nucleotide binding domains (NBD1) of Pgp and MRP1, and explored the potential role of the phosphorylation target domain of Pgp on the regulation of Pgp NBD1 ATPase activity. We found that: (1) the NBD1s of Pgp and MRP1 have ATPase and GTPase activities, (2) the K(m)s of Pgp NBD1 for ATP and GTP hydrolysis are identical, while the K(m) of MRP1 NBD1 for ATP is lower than that for GTP, and (3) phosphorylation of MLD by PKA or PKC produces a marginal increase of V(max) for ATP hydrolysis, without affecting the affinity for ATP. These results show efficient GTP hydrolysis by the NBD1s of Pgp and MRP1, and a minor role of phosphorylation in the control of Pgp NBD1 ATPase activity.  相似文献   

10.
Functional activity of multidrug resistance (MDR) markers (total activity of ABC-transporters, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP) activities) in human colon adenocarcinoma and normal mucosa was examined. Functional activity of ABC-transporters was revealed in all colon tumors and in 70% of normal mucosa samples investigated. Expression of Pgp and MRP functional activity was determined in about 50% and 70% of colon tumors respectively. Pgp+MRP+ phenotype was determined in 36% of normal mucosa and adenocarcinoma samples. Expression of Pgp+MRP- phenotype was practically the same in normal mucosa and tumors (in 10 and 18% of samples respectively). Pgp-MRP+ phenotype was revealed two times more often in tumors than in mucosa--in 36 and 18% respectively. On the contrary, Pgp-MRP- phenotype was detected more rarely in tumors than in mucosa (in 10 and 36% of samples respectively). Transporters different from Pgp and MRP were also determined in some tumors and normal mucosa. At the patients with expression of Pgp function in normal mucosa the activity of the transporter was revealed in 25% of tumor samples only. On the contrary, at the patients with expression of MRP function in normal mucosa the activity of the transporter was revealed in 70% of tumor samples. At the patients with no expression of Pgp or MRP activity in normal mucosa the function of the transporters in tumors was determined in 60% and 70% of samples respectively. It is concluded that functional activity of various ABC-transporters (Pgp, MRP and other different from Pgp and MRP) is expressed in human colon adenocarcinoma; expression of ABC-transporters functional activity in normal mucosa does not predict MDR phenotype of the tumor.  相似文献   

11.
In order to study the structure of the multidrug resistance-associated protein (MRP1), which is one of the most important members of the ATP-binding cassette (ABC) protein family acting as drug-efflux systems, we have developed an epitope mapping-based strategy. By means of the mAb MRPr1, we have immunoselected clones from two distinct random peptide libraries displayed on phages and have identified several peptide sequences mimicking the internal conformation of this 190 kDa multidrug transporter protein. Phage clones able to block the immunolabeling of the MRPr1 antibody to MRP1-overexpressing multidrug resistance (MDR) H69/AR cells were isolated and, after sequencing the corresponding inserts, their amino acid sequence was compared to that of MRP1. This analysis led to the identification of the consensus sequence L.SLNWED, corresponding to the MRP1 segment LWSLNKED (residues 241-248). This MRP1 sequence is partially overlapping with the MRPr1 epitope GSDLWSLNKE (residues 238-247) previously mapped using peptide scanning techniques. These results demonstrate the high reliability of phage display technology to study not only the topography of complex integral membrane proteins such as MRP1, but also to help identify critical residues participating in the formation of the epitope structure.  相似文献   

12.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   

13.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.  相似文献   

14.
Ivermectin is a potent antiparasitic drug from macrocyclic lactone (ML) family, which interacts with the ABC multidrug transporter P-glycoprotein (Pgp). We studied the interactions of ivermectin with the multidrug resistance proteins (MRPs) by combining cellular and subcellular approaches. The inhibition by ivermectin of substrate transport was measured in A549 cells (calcein or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, BCECF) and in HL60-MRP1 (calcein). Ivermectin induced calcein and BCECF retention in A549 cells (IC(50) at 1 and 2.5microM, respectively) and inhibited calcein efflux in HL60-MRP1 (IC(50)=3.8microM). The action of ivermectin on the transporters ATPase activity was followed on membranes from Sf9 cells overexpressing human Pgp, MRP1, 2 or 3. Ivermectin inhibited the Pgp, MRP1, 2 and 3 ATPase activities after stimulation by their respective activators. Ivermectin showed a rather good affinity for MRPs, mainly MRP1, in the micromolar range, although it was lower than that for Pgp. The transport of BODIPY-ivermectin was followed in cells overexpressing selectively Pgp or MRP1. In both cell lines, inhibition of the transporter activity induced intracellular retention of BODIPY-ivermectin. Our data revealed the specific interaction of ivermectin with MRP proteins, and its transport by MRP1. Although Pgp has been considered until now as the sole active transporter for this drug, the MRPs should be taken into account for the transport of ivermectin across cell membrane, modulating its disposition in addition to Pgp. This could be of importance for optimizing clinical efficacy of ML-based antiparasitic treatments. This offers fair perspectives for the use of ivermectin or non-toxic derivatives as multidrug resistance-reversing agents.  相似文献   

15.
The multidrug resistance of cancer cells can be mediated by an overexpression of the human MDR1 and MRP genes, which encode the transmembrane efflux pumps, the 170 kDa P-glycoprotein (Pgp) and the 190 kDa multidrug resistance-associated protein (MRP), respectively. In this study, we investigate which protein is preferentially overexpressed in the function of doxorubicin concentrations in the acute myelogenous leukemia cell line (OCI/AML-2). Multidrug-resistant AML-2 sublines were isolated in doxorubicin concentrations of 20, 100, 250, and 500 ng/ml. MRP was at first expressed at low concentrations of less than 5 x IC50 (100 ng/ml) of doxorubicin followed by the overexpression of Pgp with concentrations of more than 12.5 x IC50 (250 ng/ml) of doxorubicin. In addition, it appeared that increased amounts of MRP and its mRNA in AML-2/DX20 and /DX100 decreased gradually in both AML-2/DX250 and /DX500 overexpressing Pgp. In conclusion, it is thought that the overexpression of MRP or Pgp is dependent upon drug concentrations. It could be implicated that the overexpression of MRP might be negatively related to that of Pgp.  相似文献   

16.
Increased expression of P-glycoprotein (Pgp) has been demonstrated to cause multidrug resistance (MDR) in vitro, and it may be responsible for chemotherapy failure in a number of human cancers. Pgp is a plasma membrane protein thought to function as an energy-dependent drug transporter. From its deduced protein sequence the topology of Pgp was proposed to contain 12 transmembrane domains with six extracellular loops and two cytoplasmic ATP-binding sites. To investigate further the membrane orientation of Pgp, we have expressed a full length cDNA of mouse mdr1, as well as its truncated forms, in a cell-free system supplemented with dog pancreatic microsomal membranes (RM). We determined which domains of the in vitro-synthesized Pgp had transversed the RM membranes by analyzing their resistance to protease digestion and their glycosylation state. To our surprise, this system revealed that a significant portion of in vitro-synthesized Pgp molecules has an additional glycosylated domain in the C-terminal half. Previously, only the first predicted extracellular loop near the N terminus had been thought to be glycosylated. Furthermore, we discovered that Pgp has at least two functional signal recognition particle/docking protein dependent signal sequences, one at the N-terminal half and the other at the C-terminal half. These findings suggest a new topological model for in vitro synthesized P-glycoprotein which may be relevant to its in vivo topology.  相似文献   

17.
Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.  相似文献   

18.
Abstract: The multidrug transporter, P-glycoprotein (Pgp), at the blood-brain barrier is thought to be important for limiting access of toxic agents to the brain, but controversy surrounds its cellular location, whether on endothelium or on adjacent astrocyte foot processes. In the present study, the distribution of protein and mRNA for Pgp and for another transporter, multidrug resistance-associated protein (MRP), is compared with that for the endothelial marker, platelet-endothelial cell adhesion molecule-1 (PECAM-1) and for the astrocyte-derived glial fibrillary acidic protein (GFAP) in microvessels isolated from human brain and in cells grown from these microvessels. Activities of the multidrug transporters are assessed in the cultured cells from the effects of transport inhibitors on intracellular [3H]vincristine accumulation. The isolated microvessels show strong immunocytochemical staining for Pgp and PECAM-1 and little or no staining for GFAP and MRP, and they contain mRNAs detectable by RT-PCR encoding only Pgp and PECAM-1, but not GFAP or MRP. Thus, Pgp may well be synthesised and expressed on cells within the microvessels rather than on adherent astrocyte foot processes. In cells grown from the microvessels, although PECAM-1 remains, Pgp expression decreases and MRP appears. Evidence suggests these multidrug transporters are functionally active in the cultured cells.  相似文献   

19.
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.  相似文献   

20.
Dihydro-β-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-β-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-β-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-β-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-β-agarofurans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号