首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rapid delayed rectifier K(+) current, I(Kr), plays a key role in repolarisation of cardiac ventricular action potentials (APs). In recent years, a novel clinical condition denoted the short QT syndrome (SQTS) has been identified and, very recently, gain in function mutations in the gene encoding the pore-forming sub-unit of the I(Kr) channel have been proposed to underlie SQTS in some patients. Here, computer simulations were used to investigate the effects of the selective loss of voltage-dependent inactivation of I(Kr) upon ventricular APs and on the QT interval of the electrocardiogram. I(Kr) and inactivation-deficient I(Kr) were incorporated into Luo-Rudy ventricular AP models. Inactivation-deficient I(Kr) produced AP shortening that was heterogeneous between endocardial, mid-myocardial, and epicardial ventricular cell models, irrespective of whether heterogeneity between these sub-regions was incorporated of slow delayed rectifier K(+) current (I(Ks)) alone, or of I(Ks) together with that of transient outward K(+) current. The selective loss of rectification of I(Kr) did not augment transmural dispersion of AP repolarisation, as AP shortening was greater in mid-myocardial than in endo- or epicardial cell models. Simulated conduction through a 1 D transmural ventricular strand was altered by incorporation of inactivation-deficient I(Kr) and the reconstructed QT interval was shortened. Collectively, these results substantiate the notion that selective loss of I(Kr) inactivation produces a gain in I(Kr) function that causes QT interval shortening.  相似文献   

2.
Early afterdepolarizations (EADs) induced by suppression of cardiac delayed rectifier I (Kr) and/or I (Ks) channels cause fatal ventricular tachyarrhythmias. In guinea pig ventricular myocytes, partial block of one of the channels with complete block of the other reproducibly induced EADs. Complete block of both I (Kr) and I (Ks) channels depolarized the take-off potential and reduced the amplitude of EADs, which in some cases were not clearly separated from the preceding action potentials. A selective L-type Ca(2+) (I (Ca,L)) channel blocker, nifedipine, effectively suppressed EADs at submicromolar concentrations. As examined with the action potential-clamp method, I (Ca,L) channels mediated inward currents with a spike and dome shape during action potentials. I (Ca,L) currents decayed mainly due to inactivation in phase 2 and deactivation in phase 3 repolarization. When EADs were induced by complete block of I (Kr) channels with partial block of I (Ks) channels, repolarization of the action potential prior to EAD take-off failed to increase I (K1) currents and thus failed to completely deactivate I (Ca,L) channels, which reactivated and mediated inward currents during EADs. When both I (Kr) and I (Ks) channels were completely blocked, I (Ca,L) channels were not deactivated and mediated sustained inward currents until the end of EADs. Under this condition, the recovery and reactivation of I (Ca,L) channels were absent before EADs. Therefore, an essential mechanism underlying EADs caused by suppression of the delayed rectifiers is the failure to completely deactivate I (Ca,L) channels.  相似文献   

3.
Summary This paper describes experiments carried out in the absence of sodium and calcium in the external solution. Frog atrial trabeculae were stimulated in current clamp with the double sucrose gap technique. The voltage responses looked like slow action potentials with a clear threshold. These responses were not suppressed in the presence of EGTA, in the presence of sodium or calcium channel blockers, or when sulfate ions replaced chloride. Guinea pig isolated ventricular myocytes were studied in whole cell clamp mode with a pathch pipette. Under current clamp, they displayed also voltage responses with a threshold. These responses were resistant to cadmium (5mm), and were suppressed by barium (0.5mm). A negative slope conductance is required to take into account these results. The membrane current in current clamp can be estimated by plotting the response in the phase plane. This analysis shows that on both types of preparations, the current responsible for the negative slope is not time dependent. This current is suppressed by barium. It can be concluded that it is the outward current flowing through the inward rectifying potassium channels. To confirm this hypothesis, data obtained in voltage clamp on the same preparations were introduced into a computer model to predict the response in current clamp. The results were in agreement with the experiments. Similar responses could be recorded and analyzed on skeletal muscle in isotonic potassium solution. These results show that the inward rectifier can induce by itself properties looking like excitability on different preparations. The physiological significance of this effect in normal conditions is discussed. The voltage responses described in this paper look similar to the slow action potentials on heart, which are sensitive to modifications of the calcium channels, but also of the potassium channels. Some implications in cardiac pharmacology are discussed.  相似文献   

4.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

5.
Summary The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I Kdd. An alternative proposal is that the hyperpolarization-activated current I f underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K+ depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I K1. In turn, this decay would be responsible for a “fake” reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba2+ was used to block the decay of I K1. In the presence of Ba2+ the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as −120 mV. In this regard, the distinct possibility needs to be considered that Ba2+ had blocked I Kdd (and not only I K1). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba2+. In the absence of Ba2+, I Kdd was present in the pacemaker potential range and reversed at E K. In the presence of Ba2+, I Kdd was blocked and I f appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I Kdd but not with I f. The fact that I f is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I Kdd (but not of I f) in Purkinje fibers.  相似文献   

6.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

7.
The acquired form of the long-QT syndrome (LQTS) is a major safety consideration for the development and subsequent use of both cardiac and non-cardiac drugs; it is usually associated with pharmacological inhibition of cardiac HERG-encoded potassium channels. Clomiphene is an anti-estrogen agent used extensively in the treatment of infertility and is not associated with a risk of QT interval prolongation, in contrast to a structurally related compound tamoxifen. We describe here a potent inhibitory effect (IC(50) = 0.18 microM) of clomiphene on HERG ionic current (I(HERG)) recorded from a mammalian cell line expressing HERG channels. Inhibition of I(HERG) by clomiphene showed voltage-dependence and developed quickly following membrane depolarisation, indicating contingency of block on HERG channel gating. At 100 nM, clomiphene and the related anti-estrogen tamoxifen produced similar levels of I(HERG) blockade (p > 0.05). Experiments on guinea-pig isolated perfused hearts revealed that, despite its inhibitory action on I(HERG), clomiphene produced no significant effect at 1 microM on uncorrected QT interval (p > 0.1) nor on rate-corrected QT interval (QT(c); p > 0.1 for QT(c) determined using Van de Water's formula). The disparity between clomiphene's potent I(HERG) inhibition and its lack of effect on the QT interval underscores the notion that I(HERG) pharmacology may best be used alongside other screening methods when investigating the QT-prolonging tendency and related cardiotoxicity of non-cardiac drugs.  相似文献   

8.
Recent experimental and theoretical studies have found that active dendritic ionic currents can compensate for the effects of electrotonic attenuation. In particular, temporal summation, the percentage increase in peak somatic voltage responses invoked by a synaptic input train, is independent of location of the synaptic input in hippocampal CA1 pyramidal neurons under normal conditions. This independence, known as normalization of temporal summation, is destroyed when the hyperpolarization-activated current, I h, is blocked [Magee JC (1999a), Nature Neurosci. 2: 508–514]. Using a compartmental model derived from morphological recordings of hippocampal CA1 pyramidal neurons, we examined the hypothesis that I h was primarily responsible for normalization of temporal summation. We concluded that this hypothesis was incomplete. With a model that included I h, the persistent Na+ current (I NaP), and the transient A-type K+ current (I A), however, we observed normalization of temporal summation across a wide range of synaptic input frequencies, in keeping with experimental observations.  相似文献   

9.
We studied which components of mechanical cell deformation are involved in “stretch modulated ion currents” (SMIC). Murine ventricular myocytes were attached to glass coverslips and deformed in x, y and z with a 16 μm thin glass stylus (S) of calibrated stiffness. Three-dimensional confocal microscopy characterized cell deformation (T-tubular membranes, mitochondria) and bending of S (indicative of the applied force). Axial (x-) displacement of S sheared the upper cell part versus the attached bottom, close to S, it changed sarcomere length and bent z-lines (“z-line displacement”). Vertical (z-press) or transversal (y-shear) displacement of S bulged cytoplasm and mitochondria transversally without detectable z-line displacement.Axial stiffness increased with the extent of stress (“stress stiffening”). Depolymerization of F-actin or block of integrin receptors reduced stiffness. SMIC served as a proxy readout of deformation-induced signaling. Axial deformation activated a non-selective cation conductance (Gns) and deactivated an inwardly rectifying K+ conductance (GK1), z-press or y-shear did not induce SMIC. Depolymerization of F-actin or block of integrin receptors reduced SMIC. SMIC did not depend on changes in sarcomere length but correlated with the extent of z-line bending. We discuss that both shear stress at the attached cell bottom and z-line bending could activate mechanosensors. Since SMIC was absent during deformations without z-line bending we postulate that z-line bending is a necessary component for SMIC signaling.  相似文献   

10.
Using a realistic model of a CA1 hippocampal pyramidal neuron, we make experimentally testable predictions on the roles of the non-specific cation current, I h , and the A-type Potassium current, I A , in modulating the temporal window for the integration of the two main excitatory afferent pathways of a CA1 neuron, the Schaffer Collaterals and the Perforant Path. The model shows that the experimentally observed increase in the dendritic density of I h and I A could have a major role in constraining the temporal integration window for these inputs, in such a way that a somatic action potential (AP) is elicited only when they are activated with a relative latency consistent with the anatomical arrangement of the hippocampal circuitry.  相似文献   

11.
The HERG potassium channel might have a non-canonical drug binding site, distinct from the channel's inner cavity, that could be responsible for elements of closed-state pharmacological inhibition of the channel. The macrolide antibiotic erythromycin is a drug that may block unconventionally because of its size. Here we used whole-cell patch-clamp recording at 37 degrees C from heterologously expressed HERG channels in a mammalian cell line to show that erythromycin either produces a rapid open-state-dependent HERG channel inhibition, or components of both open-state-dependent and closed-state-dependent inhibition. Alanine-substitution of HERG's canonical determinants of blockade revealed that Y652 was not important as a molecular determinant of blockade, and that mutation of F656 resulted in only weak attenuation of inhibition. In computer models of the channel, erythromycin could make several direct contacts with F656, but not with Y652, in the open-state model, and erythromycin was unable to fit into a closed-state channel model.  相似文献   

12.
Hemoglobins (Hbs) have been characterized from a wide variety of eubacteria, but not from nitrogen-fixing rhizobia. Our search for Hb-like sequences in the Sinorhizobium meliloti genome revealed that a gene coding for a flavohemoglobin (fHb) exists in S. meliloti (SmfHb). Computer analysis showed that SmfHb and Alcaligenes eutrophus fHb are highly similar and could fold into the same tertiary structure. A FNR-like box was detected upstream of the smfhb gene and mapping analysis revealed that the smfhb gene is flanked by nos and fix genes. These observations suggest that smjhb is regulated by the concentration of O2 and that SmfHb functions in some aspects of nitrogen metabolism.  相似文献   

13.
【目的】黄星蓟是一种极具危险性的杂草,在美国和澳大利亚等地区被列为有毒有害杂草并加以控制。目前在我国新疆等局部区域,已发现有黄星蓟的定殖,且呈蔓延危害加剧的趋势。对黄星蓟进行适生性分析及风险评估,可为该有害生物的预警防控提供理论依据。【方法】利用MaxEnt模型对黄星蓟在我国的潜在适生区进行预测,并采用多指标赋值运算,对其入侵的风险进行定量分析。【结果】黄星蓟在我国的潜在适生区达32.96%,其中高度适生区、中度适生区和低度适生区的面积分别为11.21万、34.16万、272.28万km2。其危险性综合评估风险值R为2.01,为高度危险。【结论】我国很多区域均属于黄星蓟的适生区,需要高度重视,其预测结果为建立黄星蓟长效预警与防控机制提供必要的理论基础。  相似文献   

14.
Cardiac function is regulated critically by the autonomic nervous system to adapt to the physical activity and emotional stress. A slowly activating cardiac potassium channel (I(Ks)) is modulated by stimulation of the sympathetic nervous system (SNS) and contributes to cardiac action potential shortening in the face of concomitant increases in heart rate. Activation of beta-adrenergic receptors in response to SNS stimulation results in protein kinase A (PKA)-mediated phosphorylation of I(Ks) channels. We have found that the functional regulation of the I(Ks) channel by PKA requires the A kinase-anchoring protein (AKAP) Yotiao. Yotiao forms a macromolecular complex with the channel and recruits key enzymes such as PKA and protein phosphatase 1 (PP1) to control the phosphorylation state of I(Ks). Our recent findings revealed a more active role of Yotiao in the PKA modulation of I(Ks). We found that Yotiao participates actively in translating the phosphorylation-induced change into altered channel activity. Moreover Yotiao itself can be phosphorylated by PKA upon beta-adrenergic stimulation. Ablation of Yotiao phosphorylation impairs PKA-induced changes in I(Ks) voltage-dependent activation and current kinetics. Taken together we have evidence to suggest that Yotiao plays dual roles in the PKA modulation of the I(Ks) channel. It acts not only as an adaptor protein to coordinate enzymatic reactions but also as an active regulator that directly affects channel function.  相似文献   

15.
In the present study, 3217 UniGene sequences of Neurospora crassa downloaded from the National Center for Biotechnology Information (NCBI) were mined for the identification of microsatellites or simple sequence repeats (SSRs). A total of 287 SSRs detected gives density of 1SSR/14.6 kb of 4187.86 kb sequences mined suggests that only 250 (7.8%) of sequences contained SSRs. Depending on the repeat units, the length of SSRs ranged from 14 to 17 bp for mono-, 14 to 48 bp for di-, 18 to 90 bp for tri-, 24 to 48 bp for tetra-, 30 for penta- and 42 to 48 bp for hexa-nucleotide repeats. Tri-nucleotide repeats were the most frequent repeat type (88.8%) followed by di-nucleotide repeats (5.9%). An attempt was also made with the help of bioinformatics approach to find out primer pairs for identified SSRs and primers were found only for 239 sequences. But, this part needs experimental validation. Annotation of SSRs containing sequences was also carried out.  相似文献   

16.
Crustaceans frequently encounter hypoxic water and have evolved a variety of compensatory mechanisms to deal with low O2 conditions. Typically, large decapod crustaceans attempt to maintain cardiac output by increasing stroke volume to compensate for the hypoxia-induced bradycardia. Grass shrimp (Palaemonetes pugio), small hypoxic tolerant decapod crustaceans, were used to investigate cardiac responses to hypoxia in a smaller crustacean using videomicroscopy and dimensional analysis techniques. In addition, these techniques were compared to the more established dye dilution technique for calculation of cardiac output. No significant difference was found between the two methods for determining cardiac output in grass shrimp. Cardiac parameters (heart rate fH, stroke volume VS, and cardiac output Vb) were monitored in grass shrimp exposed to progressive hypoxia (PO2s=20, 13.3, 10, 5.3, and 2 KPa O2). Shrimp exhibit a cardiac response to hypoxia that is atypical when compared to larger crustaceans. Cardiac output was maintained until water PO2 fell below 10 KPa O2. This maintenance of Vb is consistent in both large and small decapods, however the mechanism differs. In grass shrimp, VS was PO2 dependent and declined significantly while fH increased significantly when PO2 was reduced to 13.3 KPa O2.  相似文献   

17.
Genetically engineered pacemaking in ventricular cells has been achieved by down-regulation of the time independent inward rectifying current (I K1), or insertion of the hyperpolarisation-activated funny current (I f). We analyse the membrane system (i.e. ionic concentrations clamped) of an epicardial Luo-Rudy dynamic cell model using continuation algorithms with the maximum conductance () of I K1 and I f as bifurcation parameters. Pacemaker activity can be induced either via Hopf or homoclinic bifurcations. As K1 is decreased by ≈74%, autorhythmicity emerged via a homoclinic bifurcation, i.e., the periodicity first appear with infinitely large periods. In contrast, the insertion of f induced periodicity via a subcritical Hopf bifurcation at f≈ 0.25 mSμF−1. Stable autorhythmic action potentials occurred at f > 0.329 mSμF−1.  相似文献   

18.
The goal of the present study was to assess how genetic loss of microsomal prostaglandin E2 synthase-1 (mPGES-1) affects acute cardiac ischemic damage after coronary occlusion in mice. Wild type (WT), heterozygous (mPGES-1+/−), and homozygous (mPGES-1−/−) knockout mice were subjected to left coronary artery occlusion. At 24 h, myocardial infarct (MI) volume was measured histologically. Post-MI survival, plasma levels of creatine phosphokinase (CPK) and cardiac troponin-I, together with MI size, were similar in WT, mPGES-1+/− and mPGES-1−/− mice. In contrast, post-MI survival was reduced in mPGES-1−/− mice pretreated with I prostanoid receptor (IP) antagonist (12/16) compared with vehicle-treated controls (13/13 mPGES-1−/−) together with increased CPK and cardiac troponin-I release. The deletion of mPGES-1 in mice results in increased prostacyclin I2 (PGI2) formation and marginal effects on the circulatory prostaglandin E2 (PGE2) level. We conclude that loss of mPGES-1 results in increased PGI2 formation, and in contrast to inhibition of PGI2, without worsening acute cardiac ischemic injury.  相似文献   

19.
BACKGROUND: The antiepileptic drugs (AEDs) phenytoin, phenobarbital, dimethadione, and carbamazepine cause a similar pattern of malformations in humans, with an increased risk after polytherapy. The teratogenicity has been linked to cardiac rhythm disturbances and hypoxic damage as a consequence of their common potential to inhibit a specific potassium ion current (IKr). The IKr is of major importance for embryonic cardiac repolarization and rhythm regulation. This study investigated whether these AEDs cause irregular rhythm and if various combinations of AEDs result in higher arrhythmia risk than exposure to a single AED. METHODS: The effects on heart rhythm of a single AED (monotherapy), and of various combinations (polytherapy) of AEDs, in gestational day 10 C57BL mouse embryos in culture were analyzed and graphically illustrated during a 25 s recording with a digitalization technique. RESULTS: All of the studied AEDs caused increased intervals between heartbeats (resulting in bradycardia) and large variations in the interval between heartbeats (resulting in irregular rhythm) in a concentration-dependent manner in cultured mouse embryos. Dimethadione caused irregular rhythm at concentrations within and phenytoin slightly above the therapeutic ranges. Polytherapy resulted in more substantial prolongation of the mean interval between heartbeats (>60 ms) than monotherapy at clinically relevant concentrations. CONCLUSIONS: The results suggest that polytherapy more than monotherapy causes substantial prolongation of the cardiac repolarization, a marker associated with high risk of developing irregular rhythm during longer exposure periods (days to months). This supports the idea that the increased risk for malformations following polytherapy is linked to an increased risk for cardiac rhythm disturbances.  相似文献   

20.
The active dendritic conductances shape the input-output properties of many principal neurons in different brain regions, and the various ways in which they regulate neuronal excitability need to be investigated to better understand their functional consequences. Using a realistic model of a hippocampal CA1 pyramidal neuron, we show a major role for the hyperpolarization-activated current, Ih, in regulating the spike probability of a neuron when independent synaptic inputs are activated with different degrees of synchronization and at different distances from the soma. The results allowed us to make the experimentally testable prediction that the Ih in these neurons is needed to reduce neuronal excitability selectively for distal unsynchronized, but not for synchronized, inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号