首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we prepared an IgM monoclonal antibody(PFG-1) which specifically recognized a cell-membraneglycoprotein (PFG-1 antigen; 55 kD, pI 5.9),immunohistochemically reacted with granulosa cells ofhealthy follicles but not of atretic follicles, andinduced granulosa cell apoptosis. In the presentstudy, an IgM monoclonal antibody (PFG-3) capable ofinducing granulosa cell apoptosis and an IgGmonoclonal antibody (PFG-4) not capable of inducingapoptosis were produced against granulosa cellsprepared from healthy antral follicles of porcineovaries. Two-dimensional Western blotting analysisrevealed that PFG-3 specifically recognized twocell-membrane proteins (named PFG-3-1 andPFG-3-2/PFG-1 antigens; 42 kD, pI 5.2 and 55 kD, pI5.9, respectively) of healthy granulosa cells, andthat PFG-4 recognized the same two cell-membraneproteins. In atretic granulosa cells, PFG-3-2/PFG-1antigen disappeared. Immunochemical reactions of theseantibodies were only detected in follicular granulosacells but not any other ovarian tissues or organs.PFG-3 and PFG-4 immunohistochemically reacted withgranulosa cells of healthy and atretic follicles. Whenthe isolated granulosa cells prepared from healthyfollicles were cultured in medium containing PFG-3,the cells underwent apoptosis, and co-incubation withPFG-4 inhibited PFG-3-inducible apoptosis. Theseobservations suggested that PFG-3-2/PFG-1 antigen isa novel cell death receptor which is different fromthe apoptosis-mediating receptors (Fas/Apo-1/CD95 orTNF receptor), and that PFG-3-1 antigen may act as adecoy receptor and inhibit apoptotic signal transmission.  相似文献   

2.
3.
4.
Polycystic ovary syndrome (PCOS) is a pathological condition recognized by menstrual cycle irregularities, androgen excess, and polycystic ovarian morphology, affecting a significant proportion of women of childbearing age and accounting for the most prevalent cause of anovulatory sterility. In addition, PCOS is frequently accompanied by metabolic and endocrine disturbances such as obesity, dyslipidemia, insulin resistance, and hyperinsulinemia, indicating the multiplicity of mechanisms implicated in the progression of PCOS. However, the exact pathogenesis of PCOS is yet to be elucidated. Programmed cell death 4 (PDCD4) is a ubiquitously expressed protein that contributes to the regulation of various cellular processes, including gene expression, cell cycle progression, proliferation, and apoptosis. Despite some disparities concerning its exact cellular effects, PDCD4 is generally characterized as a protein that inhibits cell cycle progression and proliferation and instead drives the cell into apoptosis. The apoptosis of granulosa cells (GCs) is speculated to take a major part in the occurrence and progression of PCOS by ceasing antral follicle development and compromising oocyte competence. Given the possible involvement of GC apoptosis in the progression of PCOS, as well as the contribution of PDCD4 to the regulation of cell apoptosis and the development of metabolic diseases, the current review aimed to discuss whether or how PDCD4 can play a role in the pathogenesis of PCOS by affecting GC apoptosis.  相似文献   

5.
6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

7.
Death receptors belong to the tumor necrosis factor receptor (TNFR) super family and are intimately involved in the signal transduction during apoptosis, stress response and cellular survival. Here we present the crystal structure of recombinantly expressed death receptor six (DR6), one family member that was recently shown to bind to the amyloid precursor protein (APP) and hence to be probably involved in the development of Alzheimer's disease. The extracellular cysteine rich region of DR6, the typical ligand binding region of all TNFRs, was refined to 2.2 Å resolution and shows that its four constituting cysteine rich domains (CRDs) are arranged in a rod-like overall structure, which presents DR6-specific surface patches responsible for the exclusive recognition of its ligand(s). Based on the structural data, the general ligand binding modes of TNFRs and molecular modeling experiments we were able to elucidate structural features of the potential DR6-APP signaling complex.  相似文献   

8.
《MABS-AUSTIN》2013,5(6):1560-1570
Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5. To overcome this limitation, a novel multivalent Nanobody approach was taken with the goal of generating a significantly more potent DR5 agonist. In the present study, we show that trivalent DR5 targeting Nanobodies mimic the activity of natural ligand, and furthermore, increasing the valency of domains to tetramer and pentamer markedly increased potency of cell killing on tumor cells, with pentamers being more potent than tetramers in vitro. Increased potency was attributed to faster kinetics of death-inducing signaling complex assembly and caspase-8 and caspase-3 activation. In vivo, multivalent Nanobody molecules elicited superior anti-tumor activity compared to a conventional DR5 agonist antibody, including the ability to induce tumor regression in an insensitive patient-derived primary pancreatic tumor model. Furthermore, complete responses to Nanobody treatment were obtained in up to 50% of patient-derived primary pancreatic and colon tumor models, suggesting that multivalent DR5 Nanobodies may represent a significant new therapeutic modality for targeting death receptor signaling.  相似文献   

9.
Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5. To overcome this limitation, a novel multivalent Nanobody approach was taken with the goal of generating a significantly more potent DR5 agonist. In the present study, we show that trivalent DR5 targeting Nanobodies mimic the activity of natural ligand, and furthermore, increasing the valency of domains to tetramer and pentamer markedly increased potency of cell killing on tumor cells, with pentamers being more potent than tetramers in vitro. Increased potency was attributed to faster kinetics of death-inducing signaling complex assembly and caspase-8 and caspase-3 activation. In vivo, multivalent Nanobody molecules elicited superior anti-tumor activity compared to a conventional DR5 agonist antibody, including the ability to induce tumor regression in an insensitive patient-derived primary pancreatic tumor model. Furthermore, complete responses to Nanobody treatment were obtained in up to 50% of patient-derived primary pancreatic and colon tumor models, suggesting that multivalent DR5 Nanobodies may represent a significant new therapeutic modality for targeting death receptor signaling.  相似文献   

10.
11.
Dopamine agonists such as bromocriptine and cabergoline have been successfully used in the treatment of pituitary prolactinomas and other neuroendocrine tumors. However, their therapeutic mechanisms are not fully understood. In this study we demonstrated that DRD5 (dopamine receptor D5) agonists were potent inhibitors of pituitary tumor growth. We further found that DRD5 activation increased production of reactive oxygen species (ROS), inhibited the MTOR pathway, induced macroautophagy/autophagy, and led to autophagic cell death (ACD) in vitro and in vivo. In addition, DRD5 protein was highly expressed in the majority of human pituitary adenomas, and treatment of different human pituitary tumor cell cultures with the DRD5 agonist SKF83959 resulted in growth suppression, and the efficacy was correlated with the expression levels of DRD5 in the tumors. Furthermore, we found that DRD5 was expressed in other human cancer cells such as glioblastomas, colon cancer, and gastric cancer. DRD5 activation in these cell lines suppressed their growth, inhibited MTOR activity, and induced autophagy. Finally, in vivo SKF83959 also inhibited human gastric cancer cell growth in nude mice. Our studies revealed novel mechanisms for the tumor suppressive effects of DRD5 agonists, and suggested a potential use of DRD5 agonists as a novel therapeutic approach in the treatment of different human tumors and cancers.  相似文献   

12.
TRAIL resistance in many cancer cells is one of the major problems in TRAIL-based cancer therapy. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are strictly needed for the improvement of anti-cancer effect of TRAIL. Acrolein is a byproduct of lipid peroxidation, which has been involved in pulmonary, cardiac and neurodegenerative diseases. We investigated whether acrolein, an α,β-unsaturated aldehyde, can potentiate TRAIL-induced apoptosis in human renal cancer cells. The combined treatment with acrolein and TRAIL significantly induced apoptosis, and stimulated of caspase-3 activity, DNA fragmentation, and cleavage of PARP. We found that acrolein down-regulated the protein level of Bcl-2 and Bcl-2 overexpression inhibited the cell death induced by the combined treatment with acrolein and TRAIL. In addition, acrolein up-regulated C/EBP homologous protein (CHOP) and TRAIL death receptor 5 (DR5) and down-regulation of CHOP or DR5 expression using the respective small interfering RNA significantly attenuated the apoptosis induced by acrolein plus TRAIL. Interestingly, pretreatment with an antioxidant, N-acetylcysteine (NAC), inhibited not only CHOP and DR5 up-regulation but also the cell death induced by acrolein plus TRAIL. Taken together, our results demonstrated that acrolein enhances TRAIL-induced apoptosis in Caki cells through down-regulation of Bcl-2 and ROS dependent up-regulation of DR5.  相似文献   

13.
14.
The cell-extrinsic apoptotic pathway triggers programmed cell death in response to certain ligands that bind to cell-surface death receptors. Apoptosis is essential for normal development and homeostasis in metazoans, and furthermore, selective activation of the cell-extrinsic pathway in tumor cells holds considerable promise for cancer therapy. We used phage display to identify peptides and synthetic antibodies that specifically bind to the human proapoptotic death receptor DR5. Despite great differences in overall size and structure, the DR5-binding peptides and antibodies shared a tripeptide motif, which was conserved within a disulfide-constrained loop of the peptides and the third complementarity determining region of the antibody heavy chains. The X-ray crystal structure of an antibody in complex with DR5 revealed that the tripeptide motif is buried at the core of the interface, confirming its central role in antigen recognition. We found that certain peptides and antibodies exhibited potent proapoptotic activity against DR5-expressing SK-MES-1 lung carcinoma cells. These phage-derived ligands may be useful for elucidating DR5 activation at the molecular level and for creating synthetic agonists of proapoptotic death receptors.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family that selectively induces apoptosis in cancer cells. However, gastric cancer cells are insensitive to TRAIL. In the present study, we show that oxaliplatin enhanced TRAIL-induced apoptosis of MGC803, BGC823, and SGC7901 cells. Oxaliplatin promoted death receptor 4 (DR4) and death receptor 5 (DR5) clustering into aggregated lipid rafts, while the cholesterol-sequestering agent nystatin partially prevented lipid raft aggregation, DR4 and DR5 clustering, and reduced apoptosis. Furthermore, the expression of the casitas B-lineage lymphoma (Cbl) family was downregulated by oxaliplatin. Transfection of c-Cbl or Cbl-b partially reversed oxaliplatin-induced lipid raft aggregation. These results indicated that oxaliplatin enhanced TRAIL-induced gastric cancer cell apoptosis at least partially through Cbl-regulated death receptor redistribution in lipid rafts.  相似文献   

16.
17.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

18.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

19.
Despite progress in the treatment of acute myelogenous leukaemia (AML) the outcome often remains poor. Tumour necrosis factor related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent in many different types of tumours, but AML cells are relatively insensitive to TRAIL-induced apoptosis. Here we show that TRAIL-induced apoptosis in AML cells is predominantly mediated by death receptor 4 (DR4) and not DR5. Therefore, we constructed a variant of TRAIL (rhTRAIL-C3) that is a strong inducer of DR4-mediated apoptosis. TRAIL-C3 demonstrated much stronger pro-apoptotic activity than wild-type (WT) TRAIL in a panel of AML cell lines as well as in primary AML blasts. The higher pro-apoptotic potential was further enhanced when the TRAIL mutant was used in combination with BMS-345541, a selective inhibitor of inhibitor-κB kinases. It illustrates that combination of this TRAIL variant with chemotherapeutics or other targeted agents can kill AML with high efficacy. This may represent a major advantage over the currently used therapies that have serious toxic side effects. The high efficacy of rhTRAIL-C3 containing therapies may enable the use of lower drug doses to reduce the toxic side effects and improve patient outcome. Our findings suggest that the rational design of TRAIL variants that target DR4 potentiate the death-inducing activity of TRAIL and offer a novel therapeutic strategy for the treatment of AML.  相似文献   

20.
目的应用SYBR荧光实时定量RT-PCR法检测骨髓间充质干细胞(BMSCs)对大鼠肝星状细胞(HSCs)的死亡受体5(DR5)mRNA表达的影响,探讨BMSCs诱导HSCs凋亡及其机制。方法采用贴壁筛选法培养、纯化SD大鼠BMSCs,传至第4代使用;大鼠原代HSCs细胞及肝纤维原细胞系冻融后传代使用。应用6孔塑料培养板,建立上下双层细胞共培养体系,常规培养。实验分为3组:(1)实验组:BMSCs与HSCs共培养;(2)空白对照组:HSCs单独培养;(3)阴性对照组:大鼠肝纤维原细胞与HSCs共培养。以上培养体系动态观察24、48、72h,应用流式细胞仪检测HSCs细胞凋亡率,采用SYBRGreenI荧光实时定量RT-PCR法检测,以β-actin基因作为内参,计算各组DR5mRNA的相对表达量。结果在共培养组中,BMSCs促进了HSCs凋亡,与其他两组比较差异有显著统计学意义(P〈O.01),空白对照组与阴性对照组比较无统计学意义(P〉0.05)。实验组BMSCs能明显上调HSCs中DR5mRNA的表达,与空白对照组和阴性对照组比较差异有显著统计学意义(P〈O.01);空白对照组与阴性对照组DR5mRNA的表达比较无统计学意义(P〉O.05)。结论利用SYBR荧光实时定量RT-PCR法检测BMSCs诱导大鼠肝星状细胞中DR5mRNA表达,为进一步研究BMSCs通过死亡受体途径调控HSCs凋亡以及为BMSCs用于治疗肝纤维化的机制研究提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号