首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

3.
4.
Ground beef samples prepared from electrically stimulated and nonstimulated biceps femoris and infraspinatus muscles were inoculated with Lactobacillus sp., Pseudomonas sp., Acinetobacter sp., or a mixture of Lactobacillus spp., Pseudomonas spp., Acinetobacter spp., Moraxella sp., Microbacterium thermosphactum, and Erwinia herbicola. There were no significant differences in growth of various bacteria in ground beef made from electrically stimulated and nonstimulated muscles.  相似文献   

5.
In the present study, the relationship between the pattern of electrical stimulation and glucose uptake was investigated in slow-twitch muscles (soleus) and fast-twitch muscles (epitrochlearis) from Wistar rats. Muscles were stimulated electrically for 30 min in vitro with either single pulses (frequencies varied between 0.8 and 15 Hz) or with 200-ms trains (0.1-2 Hz). Glucose uptake (measured with tracer amount of 2-[(3)H]deoxyglucose) increased with increasing number of impulses whether delivered as single pulses or as short trains. The highest glucose uptake achieved with short tetanic contractions was similar in soleus and epitrochlearis (10.9 +/- 0.7 and 12.0 +/- 0.8 mmol x kg dry wt(-1) x 30 min(-1), respectively). Single pulses, on the other hand, increased contraction-stimulated glucose uptake less in soleus than in epitrochlearis (7.5 +/- 1.1 and 11.7 +/- 0.5 mmol x kg dry wt(-1) x 30 min(-1), respectively; P < 0.02). Glucose uptake correlated with glycogen breakdown in soleus (r = 0.84, P < 0.0001) and (epitrochlearis: r = 0.91, P < 0.0001). Contraction-stimulated glucose uptake also correlated with breakdown of ATP and PCr and with reduction in force. Our data suggest that metabolic stress mediates contraction-stimulated glucose uptake.  相似文献   

6.
Continuous stimulation of a rabbit fast muscle at 10 Hz changes its physiological and biochemical parameters to those of a slow muscle. These transformations include the replacement of myosin of one type by myosin of another type. Two hypotheses could explain the cellular basis of these changes. First, if fibers were permanently programmed to be fast or slow, but not both, a change from one muscle type to another would involve atrophy of one fiber type accompanied by de novo appearance of the other type. Alternatively, preexisting muscle fibers could be changing from the expression of one set of genes to the expression of another. Fluorescein-labeled antibodies against fast (AF) and slow (AS) muscle myosins of rabbits have been prepared by procedures originally applied to chicken muscle. In the unstimulated fast peroneus longus muscle, most fibers stained only with AF; a small percentage stained only with AS; and no fibers stained with both antibodies. In stimulated muscles, most fibers stained with both AF and AS; with increasing time of stimulation, there was a progressive decrease in staining intensity with AF and a progressive increase in staining intensity with AS within the same fibers. These results are consistent with a theory that individual preexisting muscle fibers can actually switch from the synthesis of fast myosin to the synthesis of slow myosin.  相似文献   

7.
The gizzard tropomyosin molecule is composed of two subunits at 1:1 molar ratio. Possible composites of the tropomyosin molecule are two kinds of homodimer (one for each subunit), a heterodimer of two subunits, or a mixture of heterodimer and homodimer(s). We tried to evaluate the native subunit composition of gizzard tropomyosin by cross-linking experiments and immunological methods using specific antibodies to each subunit. For the cross-linking experiment we used dimethyl suberimidate, an amino group-specific cross-linker, in the presence of dithiothreitol to avoid artificial oxidative intersubunit cross-linking. When gizzard tropomyosin was cross-linked, it generated several products which might correspond to dimers formed by intersubunit cross-linkage. When the reaction was carried out for a long time, non-cross-linked subunits completely disappeared and two or three major cross-linked products arose. All of these cross-linked products were recognized by both of the specific antibodies to each subunit. These results indicated that the predominant part, if not all, of gizzard tropomyosin is present as heterodimer.  相似文献   

8.
9.
Activity of muscle spindles of fast (m. EDL) and slowly contracting (m. sol.) muscles was studied in cats 2–5 weeks after extradural division of the ventral roots of the spinal cord at the level of segments L5–S2. Spontaneous activity of muscle spindles recorded against the background of a relaxed muscle was unchanged after de-efferentation; spontaneous activity, however, evoked by stretching the muscles with a load of 100 g, was increased as a result of denervation in both primary and secondary endings. During additional stretching of the muscles with different speed and amplitude the sensory endings of the muscle spindles under conditions of chronic de-efferentation generated responses with higher than normal frequency in both the dynamic and the static phases of stretching. In this case a greater increase in frequency was observed in the slow than in the fast muscle.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 204–209, March–April, 1981.  相似文献   

10.
11.
Fast-twitch rat muscles contain three fast myosin heavy chains (HC) which can be separated by density gradient gel electrophoresis. Their mobility increases in the order of HCIIa less than HCIId less than HCIIb. In contrast to the rabbit, where chronic low-frequency nerve stimulation induces a fast-to-slow conversion, stimulation for up to 56 days does not lead to appreciable increases in the relative concentration of the slow myosin heavy chain HCI in rat fast-twitch muscles. However, chronic stimulation of rat fast-twitch muscle does evoke a rearrangement of the fast myosin heavy chain isoform pattern with a progressive decrease in HCIIb and progressive increases in HCIIa and HCIId. As judged from the time course and extent of these transitions, it appears that HCIId is an intermediate form between HCIIb and HCIIa. Single-fiber analyses of normal muscles make it possible to assign these heavy chain isoforms to histochemically defined fiber types IIB, IID, and IIA. The stimulation-induced fiber transformations produce numerous hybrid fibers displaying more than one myosin heavy chain isoform. Some transforming fibers contain up to four different myosin heavy chain isoforms.  相似文献   

12.
Skeletal muscle fibre transitions occur in many biological processes, in response to alterations in neuromuscular activity, in muscular disorders, during age-induced muscle wasting and in myogenesis. It was therefore of interest to perform a comprehensive proteomic profiling of muscle transformation. Chronic low-frequency stimulation of the rabbit tibialis anterior muscle represents an established model system for studying the response of fast fibres to enhanced neuromuscular activity under conditions of maximum activation. We have conducted a DIGE analysis of unstimulated control specimens versus 14- and 60-day conditioned muscles. A differential expression pattern was observed for 41 protein species with 29 increased and 12 decreased muscle proteins. Identified classes of proteins that are changed during the fast-to-slow transition process belong to the contractile machinery, ion homeostasis, excitation-contraction coupling, capillarization, metabolism and stress response. Results from immunoblotting agreed with the conversion of the metabolic, regulatory and contractile molecular apparatus to support muscle fibres with slower twitch characteristics. Besides confirming established muscle elements as reliable transition markers, this proteomics-based study has established the actin-binding protein cofilin-2 and the endothelial marker transgelin as novel biomarkers for evaluating muscle transformation.  相似文献   

13.
14.
mRNAs extracted from rabbit soleus, normal and 28-day, indirectly stimulated tibialis anterior muscles were translated in an in vitro system. Analysis for translation products by 2-dimensional electrophoresis showed fast myosin light chains in tibialis anterior, and slow myosin light chains in soleus muscle. The stoichiometry of the in vitro translated light chain varies from that seen in normal fast and slow twitch muscles. The stimulated muscle contained mRNA coding, both for fast and slow myosin light chains, although the pattern of slow myosin light chains appears not to be complete at this point of time of the transformation process.  相似文献   

15.
16.
17.
The purified membrane fragments of sarcoplasmic reticulum (SR) of rabbit fast skeletal muscles were found to incorporate 32P from[gamma-32P]ATP in endogenous membrane substrates and in histone H1. The existence of membrane-bound protein kinase of SR was demonstrated by steady state binding of [3H]-cAMP to the SR membranes. The constant of [3H]cAMP binding to the membranes is 2.5 +/- 0.003 x 10(6) M-1, the number of binding sites is 6.1 +/- 0.8 pmol per 1 mg of protein. The endogenous phosphorylation of SR components was inhibited by cAMP and cGMP at concentrations of 10(-7)-10(-6) and depended on Mg2+ and Ca2+. The thermostable protein inhibitor of cAMP-dependent protein kinase inhibited the endogenous phosphorylation of SR membranes by 30-40%. The protein phosphoproduct of SR membranes revealed the properties of a phosphoester. The membrane-bound protein kinase was active towards the exogenous substrate--histone H1. Phosphorylation in the presence of histones was independent of cyclic nucleotides, Mg2+ and Ca2+. Fractionation of 32P-labelled solubilized membranes in polyacrylamide gel in the presence of Na-SDS showed that the radioactivity is bound to protein zones with molecular weights of 95 000 and 6000.  相似文献   

18.
Tissue contents of the sarcoplasmic-reticulum Ca2+-ATPase (Ca2+ +Mg2+-dependent ATPase), of calsequestrin and of parvalbumin were immunochemically quantified in homogenates of fast- and slow-twitch muscles of embryonic, maturing and adult rabbits. Unlike parvalbumin, Ca2+-ATPase and calsequestrin were expressed in embryonic muscles. Presumptive fast-twitch muscles displayed higher contents of these two proteins than did presumptive slow-twitch muscles. Calsequestrin steeply increased before birth and reached adult values in the two muscle types 4 days after birth. The main increase in Ca2+-ATPase occurred during the first 2 weeks after birth. Denervation of postnatal fast- and slow-twitch muscles decreased calsequestrin to amounts typical of embryonic muscle and suppressed further increases of Ca2+-ATPase. Denervation caused slight decreases in Ca2+-ATPase in adult fast-twitch, but not in slow-twitch, muscles, whereas calsequestrin was greatly decreased in both. Chronic low-frequency stimulation induced a rapid decrease in parvalbumin in fast-twitch muscle, which was preceded by a drastic decrease in the amount of its polyadenylated RNA translatable in vitro. Tissue amounts of Ca2+-ATPase and calsequestrin were essentially unaltered up to periods of 52 days stimulation. These results indicate that in fast- and slow-twitch muscles different basal amounts of Ca2+-ATPase and calsequestrin are expressed independent of innervation, but that neuromuscular activity has a modulatory effect. Conversely, the expression of parvalbumin is greatly enhanced by phasic, and drastically decreased by tonic, motor-neuron activity.  相似文献   

19.
Actin and tropomyosin variants in smooth muscles. Dependence on tissue type   总被引:12,自引:0,他引:12  
Actin was found to be the major source of myofibrillar protein heterogeneity in smooth muscles. Three isoelectric variants, alpha-smooth muscle (alpha-SM), beta-non-muscle (beta-NM), and gamma-actins (gamma-SM and gamma-NM) were measured in 15 different smooth muscles, alpha-SM and gamma-actin contents displayed an inverse relationship in a given smooth muscle, some of which contained primarily alpha-SM actin while gamma-actins dominated in others. alpha-SM actin and gamma-actin distributions were tissue-specific, independent of species. A greater proportion of alpha-SM actin appears to be associated with tissues having a high degree of tonic activity. beta-Nonmuscle actin was a significant, and relatively constant, component of all smooth muscle tissues. The high NM-actin content of these tissues may reflect the importance of proliferative, synthetic, or secretory activities in smooth muscle, because the alpha-SM actin disappeared in tissue culture with a time course paralleling the modulation of phenotype from a contractile to a proliferative cell. Two tropomyosin subunits were present in approximately equal amounts in all smooth muscle tissues studied. One tropomyosin subunit exhibited identical mobility on two-dimensional gel electrophoresis, while the other was characterized by some species-specific variation which was unrelated to actin variant distribution. No variants of the 20,000-dalton regulatory light chain of myosin were observed. These results suggest that SM-specific actin variants are associated with functional diversity among smooth muscles.  相似文献   

20.
Adult rat fast-twitch skeletal muscle such as extensor digitorum longus contains alpha- and beta-tropomyosin subunits, as is the case in the corresponding muscles of rabbit. Adult rat soleus muscle contains beta-, gamma- and delta-tropomyosins, but no significant amounts of alpha-tropomyosin. Evidence for the presence of phosphorylated forms of at least three of the four tropomyosin subunit isoforms was obtained, particularly in developing muscle. Immediately after birth alpha- and beta-tropomyosins were the major components of skeletal muscle, in both fast-twitch and slow-twitch muscles. Differentiation into slow-twitch skeletal muscles was accompanied by a fall in the amount of alpha-tropomyosin subunit and its replacement with gamma- and delta-subunits. After denervation and during regeneration after injury, the tropomyosin composition of slow-twitch skeletal muscle changed to that associated with fast-twitch muscle. Thyroidectomy slowed down the changes in tropomyosin composition resulting from the denervation of soleus muscle. The results suggest that the 'ground state' of tropomyosin-gene expression in the skeletal muscle gives rise to alpha- and beta-tropomyosin subunits. Innervation by a 'slow-twitch' nerve is essential for the expression of the genes controlling gamma- and delta-subunits. There appears to be reciprocal relationship between expression of the gene controlling the synthesis of alpha-tropomyosin and those controlling the synthesis of gamma- and delta-tropomyosin subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号