首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and metabolism of the proteins of the cerebral pallium of the rabbit during the final one-third of the gestational period were measured. During this period, the brain increased in size almost 10-fold and the migration of neuroblasts to form the cerebral cortex became complete. Concurrent with the marked structural changes, the solubility characteristics and electrophoretic distribution of various brain proteins showed little change. However, at the time of birth and in the adult, significant differences in gel electrophoresis patterns were apparent. The rate of synthesis of protein in brain slices from the fetus of 20 days gestation was 3-fold higher per mg of tissue than in the neonate and about 30-fold higher than in the adult. Activities of acidic and neutral proteases per unit weight were virtually the same and nearly constant throughout the late fetal period. However, during this stage, while rapid growth persists, the total protein synthetic activity of the pallium predominated over the total proteolytic activity, whereas sometime after birth the ratios of these activities reversed consequent to a shutdown of the synthetic process.  相似文献   

2.
THE EFFECT OF DEVELOPMENT ON THE GANGLIOSIDES OF RAT AND PIG BRAIN   总被引:10,自引:8,他引:2  
Abstract— The ganglioside content of the forebrain, brain stem and cerebellum have been studied, in the rat at various ages from 1 day to 27 months, and in the pig at various ages from 93 days gestation to 30 months. Each part of the brain was analysed for total ganglioside NANA and for four major gangliosides (GMl, GD1a, GDlb and GT1 in the nomenclature of S vennerholm , 1963). In the rat forebrain, the concentration of ganglioside NANA rose rapidly between 1 and 21 days after birth, fell to 3 months and subsequently rose to a mature value at 6 months. In the rat cerebellum, the peak concentration was reached at 2 months and the lower adult value at 9 months, whilst in the brain stern, the concentration rose more slowly and had a broad peak from 15 days to 2 months. Values are also given for the changes in the total amounts in each brain part. The changes in the concentrations and total amounts of ganglioside NANA, in the three parts of the pig brain were, on the whole, similar to those in rat brain except that the percentage distribution of the major gangliosides had almost attained the mature pattern at birth. In the forebrain of both species, the disialoganglioside, GD1a, accounted for the highest percentage of the total gangliosides. The results are discussed with respect to their possible structural significance.  相似文献   

3.
Abstract— The activities and electrophoretic patterns of creatine (CK) and adenylate (AK) phosphokinases were determined in the mitochondrial and high speed supernatant fractions of developing and adult mouse brain. The CK activity of the cytosol increases three-fold between 9 and 19 days of age and four-fold by 29 days. Mitochondrial CK activity increases from birth to reach a maximum four-fold that at birth by 19 days of age. The developmental changes in soluble AK activity parallels that of CK. Although the increase in CK activity of the mitochondria exceeds that of the mitochondrial proteins during the period of rapid brain development, mitochondrial AK specific activity changes little. No major changes were found during development in the electrophoretic patterns of proteins with CK or AK activity in the supernatant and mitochondrial fractions. The changes in mitochondrial CK and AK activity parallel the change from a predominantly glycolytic to an aerobic mode of brain metabolism and support the concept that these enzymes play an important role in mitochondrial energy metabolism. Soluble CK and AK activity increase concomitant with neuronal maturation and the associated greatly increased need for rapidly available high energy phosphate.  相似文献   

4.
THE SUBCELLULAR LOCALIZATION OF GANGLIOSIDES IN THE BRAIN   总被引:6,自引:2,他引:4  
  相似文献   

5.
—The present paper reports the result of studies undertaken to determine the effects of the in vivo administration of Δ9-THC on the ganglioside and sialoglycoprotein contents of rat brain subcellular fractions. Results indicate that the administration of the drug under both acute and chronic conditions brings about characteristic changes in the sialoglycoproteins and ganglioside content in all the subcellular fractions. Both sialoglycoproteins and ganglioside contents were markedly increased in microsomal and synaptosomal fractions and decreased in the mitochondrial fractions although the increase in the synaptosomal fractions has been found to be most striking. After chronic treatment, both ganglioside and sialoglycoprotein content did not change substantially in all the fractions except for a small increase in case of synaptosomal fractions.  相似文献   

6.
Abstract— Distribution of brain 5-HT content between the high-speed supernatant and particulate fractions under normal and experimental conditions was studied in postnatal and adult rats. In adult and 35-day-old rats the 5-HT content of the supernatant fraction was about 25% of that of the total homogenate and significantly higher than that in 1, 7 and 21-day-old rats. In 1-day-old rats fasting caused an increase of 100% in the turnover, 50% in the content and no alteration in the subcellular distribution of brain 5-HT, which suggests that under normal conditions 5-HT stores may be filled near to capacity. After 5-hydroxytryptophan administration, the 5-HT content of the adult rat brain increased 3-fold and that of the supernatant fraction to 35% of 5-HT content of the total homogenate. In postnatal rats, the brain 5-HT content rose to an adult level and the supernatant 5-HT percentage to a markedly higher than adult level, probably because of the known higher than adult 5-hydroxytryptophan decarboxylase activity of brain capillaries. Administration of tranylcypromine to adult rats caused a 2.6-fold increase of brain 5-HT content and a slight increase of the supernatant 5-HT percentage. At various times after the administration of the MAO inhibitors (tranylcypromine or pargyline) and fasting to the 1-day-old rats, brain 5-HT content increased 4, 5 and 7-fold, respectively, and the supernatant 5-HT rose consistently and, as in the adult, to about 30% of the 5-HT content of the total homogenate. After pargyline following reserpine pretreatment, the 5-HT content of the adult and 1-day-old rat brain increased to 2–3 times the control level and that of the supernatant fraction to about 40% of the 5-HT content of the total homogenate. The adult values for 5-HT in the particulate fraction of the 1-day-old rats after the drug treatments are in sharp contradiction to the low endogenous 5-HT content and known lack of nerve terminals and synaptic vesicles in their brains, and suggest that after MAO inhibition brain 5-HT neurons may bind the amine by some other mechanism than the Mg2+-ATP-dependent, reserpine-sensitive granular storage.  相似文献   

7.
GLYCOPROTEIN CHANGES DURING THE DEVELOPMENT OF HUMAN BRAIN   总被引:4,自引:4,他引:0  
Brain glycoprotein sugars were studied during human brain development. Marked changes were found in the sugar content of glycopeptides derived from soluble and insoluble glycoproteins, showing a general decrease in the soluble and an increase in the insoluble fraction. The data indicate that changes in glycan moiety and/or in glycoprotein population occur during development. The existence of a‘critical period’in glycoprotein development which coincides with the formation of axonal and synaptic membranes sprouting has been established (Dobbing , 1971).  相似文献   

8.
Abstract— Membrane fractions from forebrain of rat were isolated at ages ranging from 5 to 93 days. Among these fractions were total membranes, three fractions isolated by density gradient centrifugation, and three subfractions which consisted of purified myelin and of two supernatant fractions. All membrane fractions showed an increase in protein content during the first postnatal month; however, only the myelin fraction and one of its supernatant fractions showed a prolonged accumulation. Myelin protein increased continually from 0.17 mg/g brain at 15 days to 8.3 mg/g brain at 93 days.
All fractions were analysed for protein composition by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Characteristic changes in protein composition were noted during postnatal development, most of which were pronounced up to the age of 20 days. Among others was a decrease in histones as compared to other proteins, with a concomitant shift in preponderance from the slow- to the fast-migrating histone band. In parallel, other proteins of high molecular weight became more prominent. No myelin could be isolated at 5 and 10 days. The deposition of myelin proteins was parallelled by the appearance of the Wolfgram protein which points to a close correlation of the Wolfgram protein to the process of myelination.  相似文献   

9.
THE ENTRY OF CHOLESTEROL INTO RAT BRAIN DURING DEVELOPMENT   总被引:1,自引:0,他引:1  
  相似文献   

10.
Abstract— An assay system for the measurement of triphosphoinositide phosphodiesterase in homogenates of rat brain is described. With triphosphoinositide (TPI) as substrate, and in the presence of 0·1 m -KCI and saturating amounts of diethyl ether, the activity of phosphodiesterase in myelinated brain was 400–500 μmoles of TPI hydrolysed per g wet wt. per hr. One quarter of the adult level of the enzyme was present in rat brain one day after birth, with the remainder being added prior to and during the early stages of myelination. On subfractionation of brain homogenates, substantial activity of the enzyme was located in the soluble portion and in the paniculate fractions enriched in myelin and synaptosomes. The enzyme associated with the particulate fractions could not be detached from the membranes by any of several methods employed. There was a rough correlation between distribution of phosphodiesterase and that of 5'-nucleotidase, an enzyme associated with plasma membrane in a number of tissues. Some implications of the results are discussed.  相似文献   

11.
12.
Discontinuous Ficoll-sucrose gradients were used to prepare subcellular fractions from mouse cerebral cortex at various stages of postnatal development. Representative samples of each subcellular fraction were obtained by sedimentation in an analytical ultracentrifuge and each fraction was examined quantitatively and qualitatively by electron microscopy. The amount of synaptosomal material was determined for each fraction on the basis of volume percentage, obtained from a series of contiguous micrographs, to circumvent any sampling error. This allowed an accurate appraisal of synaptosomal distribution during neural development and a direct comparison of the Ficoll-sucrose gradient fractions to the original crude mitochondrial preparations. The distribution of synaptosomal material was shown to be quantitatively altered during neural development, and maturation-dependent changes, at a qualitative level, were described. In addition, the relationship between neural maturation and the relative proportion and distribution of subcellular particles which contain processes tentatively identified as growth cones were characterized.  相似文献   

13.
Catechol-O-methyl transferase (COMT) activities determined in different regions of rat brain showed small variations. Highest activities were found in the hypothalamus and corpora quadrigemina, and lowest activities in the hippocampus and corpus striatum. The regional distribution of COMT was thus at variance with the distribution of DOPA decar- boxylase in this study and with the distribution of catecholamines and tyrosine hydroxylase reported in the literature. Determinations of the subcellular distribution of COMT in rat forebrain showed that 50 per cent of the activity was recovered in the high speed supernatant fluid and about 33 per cent in the crude mitochondrial fraction. Further separation of the latter by discontinuous sucrose gradients showed that the particulate COMT was found in the synaptosomal fraction in an occluded form. Full enzyme activity was only obtained after treatment with a detergent or after resuspension in water. After hypo-osmotic rupture of the crude mitochondrial fraction, COMT was recovered in the cytoplasmic fraction. The subcellular distribution of COMT was very similar to the ones of lactate dehydrogenase and DOPA decarboxylase. The proportions of soluble COMT obtained from homogenates of various regions of the brain differed from that of choline acetyl transferase and DOPA decarboxylase but were similar to that of lactate dehydrogenase. In conclusion, COMT is a cytoplasmic enzyme almost evenly distributed in the CNS. Its distribution does not resemble the distributions of the catecholamines or of the enzymes participating in the synthesis of catecholamines.  相似文献   

14.
DEVELOPMENTAL PROFILES OF GANGLIOSIDES IN HUMAN AND RAT BRAIN   总被引:23,自引:13,他引:10  
Abstract— The developmental profiles of individual gangliosides of human brain were compared with those of rat brain. Interest was focused mainly on the pre- and early postnatal development. Human frontal lobe cortex covering the period from 10 foetal weeks to adult age and the cerebrum of rat from birth to 21 days were analysed. Lipid-NANA and lipid-P were followed; in the rat, also protein and brain weight. A limited number of samples of human cerebral white matter and cerebellar cortex were also studied. The following major results were obtained:
  • 1 The ganglioside concentration increased approximately three-fold within a short period: in rat cerebrum, from birth to the 17th day; in human cerebral cortex, from the 15th foetal week to the age of about 6 months. The largest increase in the rat brain occurred by the 11th to the 13th day; in human brain by term. The relative increase of gangliosides during this period was more rapid than that of phospholipids.
  • 2 A hitherto unknown distinct early period of ganglioside and phospholipid formation in rat occurred by the second to fourth day.
  • 3 The changes in brain ganglioside pattern, characteristic of the developmental stages of the rat, were found to be equally pronounced in the human brain.
  • 4 Regional developmental differences in the ganglioside pattern were demonstrated in human brain. A characteristic white matter pattern, rich in monosialogangliosides, had developed by the age of 1 year. The increase in ganglioside concentration and the formation of the definitive ganglioside pattern of cerebellar cortex occurred later than in cerebral cortex. This cerebellar pattern was characterized by a very large trisialoganglioside fraction.
  • 5 The two periods of rapid ganglioside metabolism in rat brain preceded the two periods of rapid protein biosynthesis.
  相似文献   

15.
Abstract— The reduction of desmosterol by cell-free preparations from developing rat brain was established and the age-dependent alterations in reductase activity were correlated with levels of desmosterol in brain. An increase in enzymic activity followed closely the sharp increase in levels of desmosterol that was observed at about 5 days of age and that reached a maximum at 8-11 days of postnatal age. Furthermore, the abrupt decrease in the desmosterol content of brain at 13-15 days of age was associated with a decrease in enzymic activity. We suggest that the enzyme may be substrate-induced and that this attribute may be of significance with respect to the ontogenesis of myelin. Cerebral desmosterol reductase exhibited a specific requirement for NADPH and was primarily a particulate enzyme.  相似文献   

16.
EFFECT OF DEVELOPMENT ON THE GANGLIOSIDES OF HUMAN BRAIN   总被引:2,自引:7,他引:2  
Abstract— The ganglioside content and composition of brains from twenty-five human fetuses, three new-born babies and ten children, were studied. The ages ranged from 13 weeks gestation to 26 months postpartum. Each brain was divided into forebrain. cerebellum and brain stem. The concentration of total gangliosides rose to a plateau at different stages of development in the different parts, whereas the total amount reached a constant value at 9 months of age in each part. The developmental profile of individual gangliosides differed in the different parts of the brain. Thus, in the forebrain GD1a. and in the cerebellum GD1a rose to become the major gangliosides. The brain stem showed little change in its ganglioside pattern during the developmental period studied. The possible significance of these charges in the gangliosides during development is discussed.  相似文献   

17.
BIOSYNTHESIS AND BIODEGRADATION OF RAT BRAIN GANGLIOSIDES STUDIED IN VIVO   总被引:9,自引:5,他引:4  
Abstract— Metabolic relationships between the four major brain gangliosides, GM1, GD1a, GDlb and GT1 were studied in vivo . Labelled acetate and glucosamine were injected intracerebrally into 6–12-day-old rats and the radioactivities of the cerebral gangliosides were analysed. Radioactivity from [3H]acetate was determined in sialic acid, sphingosine and stearic acid and from [1-14C]glucosamine in hexosamine and sialic acid. The gangliosides were labelled in proportion to their pool size. In 6 day-old rats the labelling was approx. 30 per cent lower in the sialidase-stable sialyl group than in the labile one. When the brain gangliosides were labelled in 12-day-old rats, however, the specific activities of sialidase-labile and stable sialyl groups were the same at 0.5 months after the injection of precursors and disappeared at the same rate. The results indicate that at the age of 6 days a small pool of monosialogangliosides exists, which is converted to di- and trisialogangliosides. The degradation of gangliosides was studied by following the radioactivities in sphingosine and stearic acid from 2 to 6 months after the injection of labelled acetate. The specific activities of sphingosine and stearic acid decreased simultaneously at the same rate in all the four major gangliosides. The specific activity of stearic acid was the same in total brain lipids as in gangliosides. The half-lives for the degradation of the gangliosides were age-dependent and estimated to 60 days in adult rats. They were much shorter in younger rats but no reliable figures could be determined.  相似文献   

18.
Abstract— Aminotransferase activity was measured in various areas of the nervous system of the rat (cortical grey matter, midbrain, corpus callosum, spinal cord and sciatic nerve) and in subcellular fractions of rat brain (nuclei, mitochondria and cytosol). Activity was low or absent in the sciatic nerve relative to that in the other areas, with the exception of incubation of glutamate with oxaloacetate (25 per cent of the activity found in brain) and of asparagine with 2-oxoglutarate (65 per cent of the activity found in brain). The distribution of enzymic activity was not homogeneous; alanine-2-oxoglutarate aminotransferase was highest in cortical grey matter; leucine- and GABA-2-oxoglutarate aminotransferases were highest in midbrain. Incubation of phenylalanine or tyrosine with 2-oxoglutarate gave similar activities in grey matter and midbrain. Activity generally was higher in the grey matter than in corpus callosum or spinal cord. However, incubations of methionine with 2-oxoglutarate, or glutamine with glyoxylate, gave similar activities in the three areas studied from the brain, whereas incubations of glutamate with glyoxylate gave highest activity in the corpus callosum. Only incubations of asparagine with 2-oxoglutarate, and glutamate with glyoxylate, gave significant activity in the nuclear subcellular fraction. Aminotransferase activity of phenylalanine, tyrosine or GABA with 2-oxoglutarate, or ornithine or glutamine with glyoxylate, was localized to mitochondria. The remaining reactions studied (glutamate with oxaloacetate; leucine, alanine, methionine or asparagine with 2-oxoglutarate and glutamate with glyoxylate) demonstrated activity in both the mitochondrial fraction and the soluble supernatant fraction.  相似文献   

19.
ENZYMES OF PHOSPHOINOSITIDE METABOLISM DURING RAT BRAIN DEVELOPMENT   总被引:6,自引:1,他引:5  
—The activities of four enzymes concerned with inositol lipid metabolism have been determined in homogenates of rat brains of different ages. The enzymes are CDP-diglyceride inositol phosphatidate transferase, phosphatidylinositol kinase, diphosphoinositide kinase and triphosphoinositide phosphomonoesterase. The activities of all the enzymes increased with age. Phosphatidylinositol kinase activity rose most sharply well before myelination, reaching a maximum at about 6 days of age. Diphosphoinositide kinase and triphosphoinositide phosphomonoesterase activities increased most rapidly during myelination. The increase in CDP-diglyceride inositol phosphatidate transferase showed no definite association with any period of development. It is concluded that triphosphoinositide metabolism is associated with myelin or a closely related structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号