首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

2.
Bacterial productivity and microbial biomass in tropical mangrove sediments   总被引:14,自引:0,他引:14  
Bacterial productivity (3H-thymidine incorporation into DNA) and intertidal microbenthic communities were examined within five mangrove estuaries along the tropical northeastern coast of Australia. Bacteria in mangrove surface sediments (0–2 cm depth) were enumerated by epifluorescence microscopy and were more abundant (mean and range: 1.1(0.02–3.6)×1011 cells·g DW–1) and productive (mean: 1.6 gC·m–2· d–1) compared to bacterial populations in most other benthic environments. Specific growth rates (¯x=1.1) ranged from 0.2–5.5 d–1, with highest rates of growth in austral spring and summer. Highest bacterial numbers occurred in winter (June–August) in estuaries along the Cape York peninsula north of Hinchinbrook Island and were significantly different among intertidal zones and estuaries. Protozoa (105–106·m–2, pheopigments (0.0–24.1g·gDW–1) and bacterial productivity (0.2–5.1 gC·m–2·d–1) exhibited significant seasonality with maximum densities and production in austral spring and summer. Algal biomass (chlorophylla) was low (mean: 1.6g·gDW–1) compared to other intertidal sediments because of low light intensity under the dense forest canopy, especially in the mid-intertidal zone. Partial correlation analysis and a study of possible tidal effects suggest that microbial biomass and bacterial growth in tropical intertidal sediments are regulated primarily by physicochemical factors and by tidal flushing and exposure. High microbial biomass and very high rates of bacterial productivity coupled with low densities of meiofaunal and macroinfaunal consumers observed in earlier studies suggest that microbes may be a sink for carbon in intertidal sediments of tropical mangrove estuaries.  相似文献   

3.
The presence and properties of the enzymes involved in the synthesis and conversion of phospho(enol)pyruvate (PEP) and oxaloacetate (OAA), the precursors for aspartate-derived amino acids, were investigated in three different Corynebacterium strains. This study revealed the presence of both PEP carboxykinase 0.29 mol·min–1·mg–1 of protein [units (U)·mg–1] and PEP synthetase (0.13 U·mg–1) in C. 2 glutamicum as well as pyruvate kinase (1.4 U·mg–1) and PEP carboxylase (0.16 U·mg–1). With the exception of PEP carboxykinase these activities were also present in glucose-grown C. flavum and C. lactofermentum. Pyruvate carboxylase activity was not detected in all three species cultivated on glucose or lactate. At least five enzyme activities that utilize OAA as a substrate were detected in crude extracts of C. glutamicum: citrate synthase (2 U·mg–1), malate dehydrogenase (2.5 U·mg–1), glutamate: OAA transaminase (1 U·mg–1), OAA-decarboxylating activity (0.89 U·mg–1) and the previously mentioned PEP carboxykinase (0.29 U·mg–1). The partially purified OAA-decarboxylase activity of C. glutamicum was completely dependent on the presence of inosine diphosphate and Mn2+, had a Michaelis constant (K m) of 2.0mm for OAA and was inhibited by ADP and coenzyme A (CoA). Examination of the kinetic properties showed that adenine nucleotides and CoA derivatives have reciprocal but reinforcing effects on the enzymes catalyzing the interconversion of pyruvate, PEP and OAA in C. glutamicum. A model for the regulation of the carbon flow based on these findings is presented.Correspondence to: M. S. M. Jetten  相似文献   

4.
Benthic bacterial biomass and production in the Hudson River estuary   总被引:2,自引:0,他引:2  
Bacterial biomass, production, and turnover were determined for two freshwater marsh sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl-3H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8–2.8 mg C·m–2·hour–1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl-3H]thymidine into DNA. Despite differences in dominant vegetation and tidal regime, bacterial biomass was similar (1×103±0.08 mg C·m–2) inTrapa, Typha, andNuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated withScirpus communities along the Hudson River (0.2×103±0.05 mg C·m–2 and 0.3±0.23 mg C·m–2·hour–1, respectively).  相似文献   

5.
Summary Daily rates of gross and net primary production were calculated in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988 (EPOS, Leg 2) on the basis of kinetic experiments, which combine radiotracer technology and classic biochemical procedures, and by taking into account the light regime, the physical structure of the water column, the vertical distribution of chlorophyll a, and the protozoan grazing pressure. From these calculations, three distinct sub-areas were identified: the Closed Pack Ice Zone (CPIZ), characterized by the lowest average gross primary production (0.36 gC · m–2 · day–1); the Marginal Ice Zone (MIZ) with a maximum mean value of 1.76 gC · m–2 · day–1; and the Open Ocean Zone off the ice edge (OOZ) with an intermediate mean value of 0.87 gC · m–2 · day–1. Net primary production fluctuated nearly in the same proportions, averaging 0.55, 0.2 and 1.13 gC · m–2 · day–1 in the OOZ, CPIZ and MIZ respectively, representing 53% of the total photo-assimilated carbon under heavy ice cover (CPIZ) and 64% in the two other areas. Available light, strongly dependent on the ice cover, was shown to control the level of primary production in the sea ice associated sub-areas, whilst protozoa grazing on phytoplankton determined the moderate primary production level characteristic of the well illuminated OOZ area.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

6.
The primary production of phytoplankton in Lake Vechten   总被引:6,自引:6,他引:0  
The primary production of the phytoplankton of Lake Vechten (The Netherlands) (area, 4.7 ha; mean depth, 6 m), an unpolluted and stratified sandpit was investigated from 1969 to 1980 (except in 1971, 1975 and 1976) by the in situ 14C-technique. Other data collected include: solar radiation, transparency, oxygen and thermal structure. In winter and spring diatoms, Cryptophyceae and Chlorococcales were important algal groups, while in summer Dinophyceae and Chrysophyceae were important. The chlorophyll-a concentration was compared to the cellular biovolumes (= fresh weight) of the most abundant phytoplankton species. The primary production maxima occurred in winter, spring and during the summer stratification. The vertical profiles of photosynthesis exhibit light inhibition at surface to a maximum of 4 m. The maximum of zooplankton grazing in May–June caused a sharp decrease in the phytoplankton biomass and seston concentration accompanied by the highest transparency (clear water phase).The values for cellular C-fixation range from 10 to 1307 mg C · M–2 · day–1 (annual mean of 280 mg C · m–2 · day–1). High dark fixation (up to 100%) was encountered in the metalimnion and hypolimnion from July to October together with peaks of 14C-fixation due to a crowding of phytoplankton and phototrophic anoxic bacteria. Extracellular excretion by phytoplankton, investigated in 1977 to 1979, was 15% of the annual mean of the total C-fixation. The photosynthetic efficiency, turnover rates, and activity coefficients were low, particularly in the summer months when Ceratium hirundinella was predominant. The seasonal variations were controlled mainly by solar radiation and probably phosphate, the former being more important in the non-stratification period and the latter during the stratification period.  相似文献   

7.
The ecology of Lake Nakuru (Kenya)   总被引:11,自引:0,他引:11  
E. Vareschi 《Oecologia》1982,55(1):81-101
Summary Abiotic factors, standing crop and photosynthetic production were studied in the equatorial alkaline-saline closed-basin Lake Nakuru (cond. 10,000–160,000 S). Meteorological conditions and abiotic factors offer suppositions for a high primary productivity: mean solar radiation is 450–550 kerg·cm-2·s-1, with little seasonal variation, regular winds circulate the lake every day and nutrient concentrations are usually high (>100 g P–PO4·l-1). Oxygen concentrations near sediments were <1 gO2·m-3 for at least 6 h·d-1 in 1972/73, resulting in a release of 45 mg P–PO4·m-2·d-1. Attenuation coefficients vary from 3.6–16.5 according to algal densities and mean depth from 0–400 cm. Algal biomass was 200 g·m-3 (d.w.) in 1972/73, due to a lasting Spirulina platensis bloom (98.5% of algal biomass). In 1974 algal biomass suddenly dropped to 50 g·m-3 (d.w.). Spirulina and several consumer organisms almost vanished, but coccoid cyanobacteria, Anabaenopsis and diatoms increased. Several causes for this change in ecosystem structure are discussed. The use of the light/dark bottle method to measure photosynthetic production in eutrophic alkaline lakes is discussed and relevant experiments were done. Oxygen tensions of 2–35 gO2·m-3 do not influence primary production rates. Net photosynthetic rates (mgO2·m-3·h-1; photosynthetic quotient=1.18) reached 12–17.7 in 1972/73 and 2–3 in 1974, but vertically integrated rates were only 1–1.4 in 1972/73 and 0.8 in 1974, and daily net photosynthetic rates (gO2·m-3·24 h-1) 3.5 in 1972/73 and 1 in 1974. 50% of areal rates were produced within the 10 most productive cm of the depth profile. The disproportion between high algal standing crops and relatively low production rates is due to self-shading of the algae, reducing the euphotic zone to 35 cm in 1972/73 and 77 cm in 1974. Efficiency of light utilization is 0.4–2%, varying with time of day and phytoplankton density. In situ efficiencies show an inverse relationship to light intensities. Photosynthetic rates of L. Nakuru remain within the range of other African lakes (0.1–3 gO2·m-2·h-1). The relation of O2 produced/Chl a of the euphotic zone is 50% lower then in tropical African freshwater lakes and conforms to lakes of temperate regions.  相似文献   

8.
A high resolution study of chlorophyll a and primary production distribution was carried out in the Atlantic sector of the Southern Ocean during the austral summer of 1990–91. Primary production (14C assimilation) and photosynthetic capacity levels at frontal systems were among the highest recorded during the cruise (2.8–6.3 mgC·m–3·h–1, and 1.3–4.7mgC·mgChl a –1·h–1, respectively). Blooms at ocean fronts were strongly dominated by specific size classes and species. This suggests that the increase in biomass was probably the result of an enhancement of in situ production by selected components of the phytoplankton assemblage, rather than accumulation of cells through hydrographic forces. This hypothesis is supported by the high variability of photosynthetic capacities at adjacent stations along the transects. Blooms (ca 2.7–3.5 mg Chl a·m–3) were found at three oceanic fronts (the Subtropical, Subantarctic and Antarctic Polar Fronts) during the early summer. These were equivalent to, or denser than, blooms in the Marginal Ice Zone and at the Continental Water Boundary. Seasonal effects on phytoplankton community structure were very marked. In early summer (December), netphyto-plankton (>20 m) was consistently the major component of the frontal blooms, with the chain-forming diatoms Chaetoceros spp. and Nitzschia spp. dominating at the Subantarctic and Antarctic Polar Fronts, respectively. During late summer (February), nanophytoplankton (1–20 m) usually dominated algal communities at the main frontal areas. Only at the Antarctic Polar Front did netphytoplankton dominate, with the diatom component consisting almost exclusively of Corethron criophilum. An early to late summer shift of maximum phytoplankton biomass from north to south of the Antarctic Polar Front was observed. Spatial covariance between silicate levels and water-column stability appeared to be the main factor controlling phytoplankton production at the Antarctic Polar Front. Low silicate concentrations may have limited diatom growth at the northern edge of the front, while a deep mixed layer depth reduced production at the southern edge of the front.  相似文献   

9.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

10.
The CO2 gas exchange rates of the Central European perennial understory plantAsarum europaeum L. were measured in late autumn (October 30 to November 30) in its natural habitat day and night.During these measurements the temperature ranged from 0 to 15°C and the absolute air humidity from 3 to 10 mg H2O·1–1. Temperature and absolute air humidity over these ranges did not affect CO2 net assimilation which was determined almost entirely by quantum flux density.CO2 net assimilation was light saturated at about 100 M·m–2·s–1 quantum flux density. The uptake rate at this point was 4.3 mg·dm–2·h–1. The compensation point occurred at approximately 1 M·m–2·s–1.  相似文献   

11.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

12.
Light dependent sediment-water exchange rates of dissolved reactive silicon (DRSi) and phosphorus (DRP) were studied on field station Archipel (3 m water depth) in Lake Grevelingen (SW Netherlands). Bell jars, either light or darkened, were fixed permanently over a productive microflora mat of mainly Navicula spp.; sediment-water exchange was monitored over an 11 days period. Gross primary production values in the mat amounted to 1000 mg C·m–2·day–1.In the dark bell jar, DRSi and DRP release rates from the sediment were ca. 275 and 85 mg·m–2·day–1, respectively. Release rates in the light bell jars were on average only 15% of these values. Parallel bell jar experiments under different environmental conditions indicate a direct relationship between the primary production figures and nutrient sediment-water exchange rates.Communication nr. 369 of the Delta Institute for Hydrobiological Research, Yerseke, the Netherlands. This paper was presented at the first International Workshop on phosphorus fractionation, availability and release of the Sediment Phosphorus Group, held in Vienna, 23–26 March, 1986.  相似文献   

13.
Structured models of antibiotic fermentation that quantify maturation and aging of product forming biomass are fitted to experimental data. Conditions of superiority of repeated fed batch cultivation are characterized on the basis of a performance criterion that includes penicillin productivity and costs of operation. Emphasis is placed on the relevance of such research to the model aided design of optimal cyclic operation.List of Symbols c IU/mg cost factor - D s–1 dilution rate - J IU · cm–3 · h–1 net productivity - k p IU · mg–11 · h–1 specific product formation rate - k pm IU · mg–1 · h–1 maximum specific product formation rate - p IU/cm3 concentration of penicillin - T s final time of fermentation - t s fermentation time - X kg/m3 concentration of biomass dry weight - X 1kg/m3 concentration of young, immature biomass - X 2 kg/m3 concentration of mature product forming biomass - X c kg/m3 biomass concentration of the end of growth phase - X mkg/m3 maximum biomass concentration Greek Letters s–1 specific maturation rate - s–1 specific aging rate - s–1 specific growth rate - m s–1 maximum specific growth rate - p s–1 specific growth rate during the product formation phase - s cycle time - % volume fraction of draw-off Abbreviations CC chemostat culture - RFBC repeated fed batch culture - RBC repeated batch culture  相似文献   

14.
Estimates of bacterial production based on total trichloroacetic acid (TCA)-precipitable [methyl-3H]thymidine incorporation and frequency of dividing cell (FDC) techniques were compared to sediment respiration rates in Lake George, New York. Bacterial growth rates based on thymidine incorporation ranged from 0.024 to 0.41 day–1, while rates based on FDC ranged from 1.78 to 2.48 day–1. Respiration rates ranged from 0.11 to 1.8mol O2·hour–1·g dry weight sediment–1. Thymidine incorporation yielded production estimates which were in reasonable agreement with respiration rates. Production estimates based on FDC were 4- to 190-fold higher than those predicted from respiration rates.  相似文献   

15.
The black yeast Exophiala jeanselmei can grow on styrene as the sole source of carbon and energy in concentrations up to 0.36 mm. No growth is observed at higher styrene concentrations. Styrene oxidation is induced by styrene or styrene-related compounds, whereas glucose represses this styrene oxidation. E. jeanselmei shows a broad substrate specificity: various aromatic compounds are used as the sole source of carbon and energy. Styrene-grown cells can oxidize styrene, styrene oxide, phenylacetaldehyde, phenylacetic acid and 2-phenylethanol at a rate of 1.3 to 3.2 g O2·min–1·mg–1 protein. A pathway for the degradation of styrene in E. jeanselmei is suggested.  相似文献   

16.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

17.
The seasonal variation in primary production, individual numbers, and biomass of phyto- and zooplankton was studied in the River Danube in 1981. The secondary production of two dominant zooplankton species (Bosmina longirostris and Acanthocyclops robustus) was also estimated. In the growing season (April–Sept.) individual numbers dry weights and chlorophyll a contents of phytoplankton ranged between 30–90 × 106 individuals, l–1, 3–12 mg l–1, and 50–170 µg l–1, respectively. Species of Thalassiosiraceae (Bacillariophyta) dominated in the phytoplankton with a subdominance of Chlorococcales in summer. Individual numbers and dry weights of crustacean zooplankton ranged between 1400–6500 individuals m–3, and 1.2–12 mg m–3, respectively. The daily mean gross primary production was 970 mg C m–3 d–1, and the net production was 660 mg C m–3 d–1. Acanthocyclops robustus populations produced 0.2 mg C m–3 d–1 as an average, and Bosmina longirostris populations 0.07 mg C m–3 d–1. The ecological efficiency between phytoplankton and crustacean zooplankton was 0.03%.  相似文献   

18.
In order to determine the relative importance of autotrophic and heterotrophic activities in both bacterial and phytoplanktonic communities in an oligomesotrophic lake, the size fractionation by differential filtration and the use of a bacterial inhibitor (gentamycin) were combined. The study was carried out at Lake Pavin during the spring planktonic bloom. Photosynthetic and photo- and chemoheterotrophic activities were measured from the assimilation of NaH14CO3 and glucose-3H, using a double labeling technique. The bacterial community was at low cell concentration (0.6 to 7 × 105 cells ml) and represented very low biomass values (0.9 to 11.5 gC liter–1). The abundance of the phytoplankton varied between 0.5 and 1.8 × 106 cells liter–1, and biomass values ranged between 19 and 118 gC liter–1. The diatom Melosira italica sp. subarctica (O. Mueller) was the largely dominant species in the meta- and hypolimnion. Inorganic fixation by photolithotrophy (mean value: 1.66 mg C m–3 hour–1) largely predominates over assimilation by photoheterotrophy (mean value: 0.93 g C m–3 hour–1) or chemoheterotrophy (mean value: 2.42 g C m–3 hour–1). However, because of the considerable underestimation of heterotrophic assimilation due to the experimental methods used, and because of the spatial and temporal separation of photolithotrophic and photo- and chemoheterotrophic activities, it is likely that the fixation of organic carbon by microalgae plays an important role in the survival of species and/or in competitive interactions, as the results with Monoraphidium contortum (Pasch. et Korschik.), the prevailing species in the epilimnion, would suggest. Send offprint requests to: C. Amblard.  相似文献   

19.
Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and its components, ecosystem carbon assimilation (A c) and ecosystem respiration (R E), in a southeastern United States grassland ecosystem subject to periodic drought and harvest using a combination of eddy-covariance measurements and model calculations. We modeled A c and evapotranspiration (ET) using a big-leaf canopy scheme in conjunction with ecophysiological and radiative transfer principles, and applied the model to assess the sensitivity of NEE and ET to soil moisture dynamics and rapid excursions in leaf area index (LAI) following grass harvesting. Model results closely match eddy-covariance flux estimations on daily, and longer, time steps. Both model calculations and eddy-covariance estimates suggest that the grassland became a net source of carbon to the atmosphere immediately following the harvest, but a rapid recovery in LAI maintained a marginal carbon sink during summer. However, when integrated over the year, this grassland ecosystem was a net C source (97 g C m–2 a–1) due to a minor imbalance between large A c (–1,202 g C m–2 a–1) and R E (1,299 g C m–2 a–1) fluxes. Mild drought conditions during the measurement period resulted in many instances of low soil moisture (<0.2 m3m–3), which influenced A c and thereby NEE by decreasing stomatal conductance. For this experiment, low had minor impact on R E. Thus, stomatal limitations to A c were the primary reason that this grassland was a net C source. In the absence of soil moisture limitations, model calculations suggest a net C sink of –65 g C m–2 a–1 assuming the LAI dynamics and physiological properties are unaltered. These results, and the results of other studies, suggest that perturbations to the hydrologic cycle are key determinants of C cycling in grassland ecosystems.  相似文献   

20.
Desulfotomaculum acetoxidans has been proposed to oxidize acetate to CO2 via an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway rather than via the citric acid cycle. We report here the presence of the enzyme activities required for the operation of the novel pathway. In cell extracts the following activities were found (values in brackets=specific activities and apparent K m; 1 U·mg-1=1 mol·min-1·mg protein-1 at 37°C): Acetate kinase (6.3 U·mg-1; 2 mM acetate; 2.4 mM ATP); phosphate acetyltransferase (60 U·mg-1, 0.4 mM acetylphosphate; 0.1 mM CoA); carbon monoxide dehydrogenase (29 U·mg-1; 13% carbon monoxide; 1.3 mM methyl viologen); 5,10-methylenetetrahydrofolate reductase (3 U·mg-1, 0.06 mM CH3–FH4); methylenetetrahydrofolate dehydrogenase (3.6 U·mg-1, 0.9 mM NAD, 0.1 mM CH2=FH4); methenyltetrahydrofolate cyclohydrolase (0.3 U·mg-1); formyltetrahydrofolate synthetase (3 U·mg-1, 1.4 mM FH4, 0.4 mM ATP, 13 mM formate); and formate dehydrogenase (10 U·mg-1, 0.4 mM formate, 0.5 mM NAD). The specific activities are sufficient to account for the in vivo acetate oxidation rate of 0.26 U·mg-1.Non-standard abbreviations FH4 Tetrahydrofolate - CHO-FH4 N10-formyltetrahydrofolate - CHFH4 N5,N10-methenyltetrahydrofolate - CH2=FH4 N5,N10-methylenetetrahydrofolate - CH3–FH4 N5-methyltetrahydrofolate - MOPS morpholinopropane sulfonic acid - DTT d,l-1,4-dithiothreitol - TRIS tris-(hydroxymethyl)-aminomethane - Ap5A p1,P5-di(adenosine-5)pentaphosphate - MV methyl viologen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号