首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrillin microfibrils are polymeric structures present in connective tissues. The importance of fibrillin microfibrils to connective tissue function has been demonstrated by the multiple genetic disorders caused by mutations in fibrillins and in microfibril-associated molecules. However, knowledge of microfibril structure is limited, largely due to their insolubility. Most previous studies have focused on how fibrillin-1 is organized within microfibril polymers. In this study, an immunochemical approach was used to circumvent the insolubility of microfibrils to determine the role of fibrillin-2 in postnatal microfibril structure. Results obtained from studies of wild type and fibrillin-1 null tissues, using monoclonal and polyclonal antibodies with defined epitopes, demonstrated that N-terminal fibrillin-2 epitopes are masked in postnatal microfibrils and can be revealed by enzymatic digestion or by genetic ablation of Fbn1. From these studies, we conclude that fetal fibrillin polymers form an inner core within postnatal microfibrils and that microfibril structure evolves as growth and development proceed into the postnatal period. Furthermore, documentation of a novel cryptic site present in EGF4 in fibrillin-1 underscores the molecular complexity and tissue-specific differences in microfibril structure.  相似文献   

2.
The fibrillins, large extracellular matrix molecules, are polymerized to form “microfibrils.” The fibrillin microfibril scaffold is populated by microfibril-associated proteins and by growth factors, which are likely to be latent. The scaffold, associated proteins, and bound growth factors, together with cellular receptors that can sense the microfibril matrix, constitute the fibrillin microenvironment. Activation of TGFβ signaling is associated with the Marfan syndrome, which is caused by mutations in fibrillin-1. Today we know that mutations in fibrillin-1 cause the Marfan syndrome as well as Weill-Marchesani syndrome (and other acromelic dysplasias) and result in opposite clinical phenotypes: tall or short stature; arachnodactyly or brachydactyly; joint hypermobility or stiff joints; hypomuscularity or hypermuscularity. We also know that these different syndromes are associated with different structural abnormalities in the fibrillin microfibril scaffold and perhaps with specific cellular receptors (mechanosensors). How does the microenvironment, framed by the microfibril scaffold and populated by latent growth factors, work? We must await future investigations for the molecular and cellular mechanisms that will answer this question. However, today we can appreciate the importance of the fibrillin microfibril niche as a contextual environment for growth factor signaling and potentially for mechanosensation.  相似文献   

3.
Latent transforming growth factor beta-binding protein 1 (LTBP-1) targets latent complexes of transforming growth factor beta to the extracellular matrix, where the latent cytokine is subsequently activated by several different mechanisms. Fibrillins are extracellular matrix macromolecules whose primary function is architectural: fibrillins assemble into ultrastructurally distinct microfibrils that are ubiquitous in the connective tissue space. LTBPs and fibrillins are highly homologous molecules, and colocalization in the matrix of cultured cells has been reported. To address whether LTBP-1 functions architecturally like fibrillins, microfibrils were extracted from tissues and analyzed immunochemically. In addition, binding studies were conducted to determine whether LTBP-1 interacts with fibrillins. LTBP-1 was not detected in extracted beaded-string microfibrils, suggesting that LTBP-1 is not an integral structural component of microfibrils. However, binding studies demonstrated interactions between LTBP-1 and fibrillins. The binding site was within three domains of the LTBP-1 C terminus, and in fibrillin-1 the site was defined within four domains near the N terminus. Immunolocalization data were consistent with the hypothesis that LTBP-1 is a fibrillin-associated protein present in certain tissues but not in others. In tissues where LTBP-1 is not expressed, LTBP-4 may substitute for LTBP-1, because the C-terminal end of LTBP-4 binds equally well to fibrillin. A model depicting the relationship between LTBP-1 and fibrillin microfibrils is proposed.  相似文献   

4.
5.
Both latent transforming growth factor-beta (TGF-beta)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-beta family of growth factors. Interactions between latent TGF-beta-binding protein-1 and TGF-beta and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-beta family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.  相似文献   

6.
During the previous cloning of the fibrillin gene (FBN1), we isolated a partial cDNA coding for a fibrillin-like peptide and mapped the corresponding gene (FBN2) to human chromosome 5. (Lee, B., M. Godfrey, E. Vitale, H. Hori, M. G. Mattei, M. Sarfarazi, P. Tsipouras, F. Ramirez, and D. W. Hollister. 1991. Nature [Lond.]. 352:330-334). The study left, however, unresolved whether or not the FBN2 gene product is an extracellular component structurally related to fibrillin. Work presented in this report clarifies this important point. Determination of the entire primary structure of the FBN2 gene product demonstrated that this polypeptide is highly homologous to fibrillin. Immunoelectron microscopy localized both fibrillin proteins to elastin-associated extracellular microfibrils. Finally, immunohistochemistry revealed that the fibrillins co-distribute in elastic and non-elastic connective tissues of the developing embryo, with preferential accumulation of the FBN2 gene product in elastic fiber-rich matrices. These results support the original hypothesis that the fibrillins may have distinct but related functions in the formation and maintenance of extracellular microfibrils. Accordingly, we propose to classify the FBN1 and FBN2 gene products as a new family of extracellular proteins and to name its members fibrillin-1 and fibrillin-2, respectively.  相似文献   

7.
In humans, mutations in fibrillin-1 result in a variety of genetic disorders with distinct clinical phenotypes. While most of the known mutations in fibrillin-1 cause Marfan syndrome, a number of other mutations lead to clinical features unrelated to Marfan syndrome. Pathogenesis of Marfan syndrome is currently thought to be driven by mechanisms due to haploinsufficiency of wild-type fibrillin-1. However, haploinsufficiency-driven mechanisms cannot explain the distinct phenotypes found in other fibrillinopathies. To test the hypothesis that mutations in fibrillin-1 cause disorders through primary effects on microfibril structure, two different mutations were generated in Fbn1 in mice. One mutation leads to a truncated fibrillin-1 molecule that is tagged with green fluorescent protein, allowing visualization of mutant fibrillin-1 incorporated into microfibrils. In heterozygosity, these mutant mice demonstrate progressive fragmentation of the aortic elastic lamellae and also display fragmentation of microfibrils in other tissues. Fibrillin-2 epitopes are also progressively revealed in these mice, suggesting that fibrillin-2 immunoreactivity can serve as a marker for microfibril degradation. In contrast, a second mutation (in-frame deletion of the first hybrid domain) in fibrillin-1 results in stable microfibrils, demonstrating that fibrillin-1 molecules are not required to be in perfect register for microfibril structure and function and that the first hybrid domain is dispensable for microfibril assembly. Taken together, these results suggest that perturbation of microfibril structure may underlie one of the major features of the Marfan syndrome: fragmentation of aortic elastic lamellae.  相似文献   

8.
The interactions of microfibril-associated glycoprotein (MAGP)-2 have been investigated with fibrillins and fibrillin-containing microfibrils. Solid phase binding assays were conducted with recombinant fragments covering fibrillin-1 and most of fibrillin-2. MAGP-2, and its structure relative MAGP-1, were found to bind two fragments spanning the N-terminal half of fibrillin-1 and an N-terminal fragment of fibrillin-2. Blocking experiments indicated that MAGP-2 had a binding site(s) close to the N terminus of the fibrillin-1 molecule that was distinct from that for MAGP-1 and an additional, more central binding site(s) that may be shared by the two MAGPs. Immunogold labeling of developing nuchal ligament tissue showed that MAGP-2 had regular covalent and periodic (about 56 nm) association with fibrillin-containing microfibrils of elastic fibers in this tissue. Further analysis of isolated microfibrils indicated that MAGP-2 was attached at two points along the microfibril substructure, "site 1" on the "beads" and "site 2" at the "shoulder" of the interbead region close to where the two "arms" fuse. In contrast, MAGP-1 was located only on the beads. Comparison of the MAGP-2 binding data with known fibrillin epitope maps of the microfibrils showed that site 1 correlated with the N-terminal MAGP-2 binding region, and site 2 correlated with the second, more central, MAGP-2 binding region on the fibrillin-1 molecule. Of particular note, immunolabeling at site 2 was markedly decreased, relative to that at site 1, on extended microfibrils with bead-to-bead periods over 90 nm, suggesting that site 2 may move toward the beads when the microfibril is stretched. The study points to MAGP-2 being an integral component of some populations of fibrillin-containing microfibrils. Moreover, the identification of multiple MAGP-binding sequences on fibrillins supports the concept that MAGPs may function as molecular cross-linkers, stabilizing fibrillin monomers in folded conformation within or between the microfibrils, and thus MAGPs may be implicated in the modulation of the elasticity of these structures.  相似文献   

9.
Fibrillin-1 and fibrillin-2 constitute the backbone of extracellular filaments, called microfibrils. Fibrillin assembly involves complex multistep mechanisms to result in a periodical head-to-tail alignment in microfibrils. Impaired assembly potentially plays a role in the molecular pathogenesis of genetic disorders caused by mutations in fibrillin-1 (Marfan syndrome) and fibrillin-2 (congenital contractural arachnodactyly). Presently, the basic molecular interactions involved in fibrillin assembly are obscure. Here, we have generated recombinant full-length human fibrillin-1, and two overlapping recombinant polypeptides spanning the entire human fibrillin-2 in a mammalian expression system. Characterization by gel electrophoresis, electron microscopy after rotary shadowing, and reactivity with antibodies demonstrated correct folding of these recombinant polypeptides. Analyses of homotypic and heterotypic interaction repertoires showed N- to C-terminal binding of fibrillin-1, and of fibrillin-1 with fibrillin-2. The interactions were of high affinity with dissociation constants in the low nanomolar range. However, the N- and C-terminal fibrillin-2 polypeptides did not interact with each other. These results demonstrate that fibrillins can directly interact in an N- to C-terminal fashion to form homotypic fibrillin-1 or heterotypic fibrillin-1/fibrillin-2 microfibrils. This conclusion was further strengthened by double immunofluorescence labeling of microfibrils. In addition, the binding epitopes as well as the entire fibrillin molecules displayed very stable properties.  相似文献   

10.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

11.
Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved.  相似文献   

12.
Force-bearing tissues such as blood vessels, lungs, and ligaments depend on the properties of elasticity and flexibility. The 10 to 12 nm diameter fibrillin microfibrils play vital roles in maintaining the structural integrity of these highly dynamic tissues and in regulating extracellular growth factors. In humans, defective microfibril function results in several diseases affecting the skin, cardiovascular, skeletal, and ocular systems. Despite the discovery of fibrillin-1 having occurred more than two decades ago, the structure and organization of fibrillin monomers within the microfibrils are still controversial. Recent structural data have revealed strategies by which fibrillin is able to maintain its architecture in dynamic tissues without compromising its ability to?interact with itself and other cell matrix components. This review summarizes our current knowledge of microfibril structure, from individual fibrillin domains and the calcium-dependent tuning of pairwise interdomain interactions to microfibril dynamics, and how this relates to microfibril function in health and disease.  相似文献   

13.
Fibrillins form multifunctional microfibrils in most connective tissues. Deficiencies in fibrillin assembly can result in fibrillinopathies, such as Marfan syndrome. We demonstrate the presence of heparin/heparan sulfate binding sites in fibrillin-2 and -3. Multimerization of all three fibrillins drastically increased the apparent affinity of their interaction with heparin/heparan sulfate. Surprisingly, contrary to other reports heparin/heparan sulfate strongly inhibited homo- and heterotypic N-to-C-terminal fibrillin interactions. These data suggest that heparin/heparan sulfate controls the formation of microfibrils at the bead interaction stage.  相似文献   

14.
Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes.  相似文献   

15.
Fibrillin proteins are the major components of extracellular microfibrils found in many connective tissues. Fibrillin-1 and fibrillin-2 are well studied and mutations in these proteins cause a number of fibrillinopathies including Marfan syndrome and congenital contractural arachnodactyly, respectively. Fibrillin-3 was more recently discovered and is much less well characterized. Fibrillin-1 is expressed throughout life, whereas fibrillins-2 and -3 are thought to be primarily present during development. Here, we report detailed fibrillin-3 expression patterns in early human development.A polyclonal antiserum against a C-terminal recombinant half of human fibrillin-3 was produced in rabbit. Anti-fibrillin-3 antibodies were affinity-purified and antibodies cross-reacting with the other fibrillins were removed by absorption resulting in specific anti-fibrillin-3 antibodies. Immunohistochemical analyses with these purified antibodies demonstrate that fibrillin-3 is temporally expressed in numerous tissues relatively evenly from the 6th to the 12th gestational week. Fibrillin-3 was found spatially expressed in perichondrium, perineurium, perimysium, skin, developing bronchi, glomeruli, pancreas, kidney, heart and testis and at the prospective basement membranes in developing epithelia and endothelia. Double immunohistochemical analyses showed that all fibrillins are globally expressed in the same organs, with a number of differences on the tissue level in cartilage, perichondrium and developing bronchi. These results suggest that fibrillin-3, compared to the other fibrillins, fulfills both overlapping and distinct functions in human development.  相似文献   

16.
17.
MS has been used to investigate the composition of fibrillin-rich microfibrils from non-elastic and elastic tissues, and to compare fibrillin-1 tryptic fingerprints derived from whole zonules, microfibrils and recombinant fibrillin-1. In all microfibril preparations, fibrillin-1 was abundant and the only fibrillin isoform. MAGP-1 was the only other microfibril-associated molecule. gamma-Crystallin co-purified with zonular microfibrils, so this association may contribute to ciliary zonule anchorage to lens. Recombinant fibrillin-1 tryptic peptides mapped throughout the molecule and included virtually all predicted peptides except for those larger than 4.5 kDa, smaller than 600 Da or post-translationally modified. In contrast, fewer microfibril tryptic fibrillin-1 peptides were detected, although they were derived from domains throughout the molecule and included two peptides after the C-terminal furin processing site. Several microfibril-derived N- and C-terminal domains never yielded any peptides, while tryptic peptides from other domains yielded numerous peptides, suggesting that some tissue microfibril features are retained after trypsinisation. This first MS analysis of a purified extracellular matrix assembly has provided new insights into microfibril composition and fibrillin-1 organisation within them.  相似文献   

18.
Zonular fibers are a specific form of extracellular matrix composed mainly of fibrillins. The purpose of this study was to determine which cells secrete fibrillin-1 during development and aging. A specific guinea pig fibrillin-1 mRNA probe was designed and cloned in order to identify fibrillin-secreting cells in guinea pig eye, using in situ hybridization. Immunofluorescence, with a specific guinea pig monoclonal antibody, was used to compare protein levels at different stages from birth to 35 months of age. Electron microscopy and immunolabeling were used to investigate the organization of zonular microfibril bundles. We identified the cells of non-pigmented epithelium of the ciliary body as the main source of fibrillin secreted into the zonule. Moreover, while mRNA expression decreased during aging, there was no decrease in fibrillin immunoreactivity, as previously described in human aorta. These data indicate a very slow turnover of the zonular microfibrils which can be correlated with the appearance during aging of a new periodic fibrillar structure. This new structure may reflect an increased cross-linking in the long-lived zonular microfibrillar bundles.  相似文献   

19.
The extracellular glycoproteins fibrillin-1 and fibrillin-2 are major components of connective tissue microfibrils. Mutations in the fibrillin-1 and fibrillin-2 genes are responsible for the phenotypical manifestations of Marfan syndrome and congenital contractural arachnodactyly respectively, which emphasizes their essential roles in developmental processes of various tissues. Consistent with this last notion, organ culture experiments have indirectly suggested morphogenic roles for fibrillins in lung and kidney development. In order to contribute to the understanding of the roles of fibrillins in developmental and morphogenetic events, we have investigated the distribution of fibrillin-1 and fibrillin-2 in human embryonic and early fetal tissues between the 5th and the 12th gestational week, i.e. at the beginning of organogenesis. Fibrillin-1 and fibrillin-2 were localized immunohistochemically using specific monoclonal antibodies, mAb 69 and mAb 48, respectively. Both fibrillins are widely distributed in various human anlagen, from early developmental stages. In most embryonic and early fetal human organs such as skin, lung, heart, aorta, central nervous system anlage, nerves, and ganglia, fibrillin-1 and fibrillin-2 follow the same temporo-spatial pattern of distribution. However, in other organs such as kidney, liver, rib anlagen, notochord fibrillin-1 and fibrillin-2 are distributed differentially. The present paper is focused on this aspect. These results suggest different roles for fibrillin-1 and -2 in the development of these structures.  相似文献   

20.
Biochemical and biophysical methods are used to show that BMP-7 is secreted as a stable complex consisting of the processed growth factor dimer noncovalently associated with its two prodomain propeptide chains and that the BMP-7 complex is structurally similar to the small transforming growth factor beta (TGFbeta) complex. Because the prodomain of TGFbeta interacts with latent TGFbeta-binding proteins, a family of molecules homologous to the fibrillins, the prodomain of BMP-7 was tested for binding to fibrillin-1 or to LTBP-1. The BMP-7 prodomain and BMP-7 complex, but not the separated growth factor dimer, interact with N-terminal regions of fibrillin-1. This interaction may target the BMP-7 complex to fibrillin microfibrils in the extracellular matrix. Immunolocalization of BMP-7 in tissues like the kidney capsule and skin reveals co-localization with fibrillin. However, BMP-7 immunolocalization in other tissues known to be active sites for BMP-7 signaling is not apparent, suggesting that immunolocalization of BMP-7 in certain tissues represents specific extracellular storage sites. These studies suggest that the prodomains of TGFbeta-like growth factors are important for positioning and concentrating growth factors in the extracellular matrix. In addition, they raise the possibility that prodomains of other TGFbeta-like growth factors interact with fibrillins and/or LTBPs and are also targeted to the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号