首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.  相似文献   

2.
MUC17, a novel membrane-tethered mucin   总被引:13,自引:0,他引:13  
Membrane mucins have several functions in epithelial cells including cytoprotection, extravasation during metastases, maintenance of luminal structure, and signal transduction. In this paper we describe a large membrane mucin expressed in the normal intestine. This novel mucin, designated MUC17, contains an extended, repetitive extracellular glycosylation domain and a carboxyl terminus with two EGF-like domains, a SEA module domain, a transmembrane domain, and a cytoplasmic domain with potential serine and tyrosine phosphorylation sites. RNA blot analysis and in situ hybridization indicates that MUC17 is expressed in select pancreatic and colon cancer cell lines and in intestinal absorptive cells. Radiation hybrid mapping localized MUC17 to chromosome 7q22 where it resides in close proximity with three other membrane mucin genes, MUC3A, MUC3B, and MUC12. Thus, these membrane mucins reside together in a gene cluster, but are expressed in different tissues and are likely to have different functions as well.  相似文献   

3.
The membrane-tethered mucins are cell surface-associated dimeric or multimeric molecules with extracellular, transmembrane and cytoplasmic portions, that arise from cleavage of the primary polypeptide chain. Following the first cleavage, which may be cotranslational, the subunits remain closely associated through undefined noncovalent interactions. These mucins all share a common structural motif, the SEA module that is found in many other membrane-associated proteins that are released from the cell surface and has been implicated in both the cleavage events and association of the subunits. Here we examine the SEA modules of three membrane-tethered mucins, MUC1, MUC3 and MUC12, which have significant sequence homology within the SEA domain. We previously identified the primary cleavage site within the MUC1 SEA domain as FRPG/SVVV a sequence that is highly conserved in MUC3 and MUC12. We now show by site-directed mutagenesis that the F, G and S residues are important for the efficiency of the cleavage reaction but not indispensable and that amino acids outside this motif are probably important. These data are consistent with a new model of the MUC1 SEA domain that is based on the solution structure of the MUC16 SEA module, derived by NMR spectroscopy. Further, we demonstrate that cleavage of human MUC3 and MUC12 occurs within the SEA domain. However, the SEA domains of MUC1, MUC3 and MUC12 are not interchangeable, suggesting that either these modules alone are insufficient to mediate efficient cleavage or that the 3D structure of the hybrid molecules does not adequately re-create an accessible cleavage site.  相似文献   

4.
Mucins are large glycoproteins characterized by mucin domains that show little sequence conservation and are rich in the amino acids Ser, Thr, and Pro. To effectively predict mucins from genomic and protein sequences obtained from genome projects, we developed a strategy based on the amino acid compositional bias characteristic of the mucin domains. This strategy is combined with an analysis of other features commonly found in mucins. Our method has now been used to predict mucins in the puffer fish Fugu rubripes that were previously not identified or annotated. At least three gel-forming mucins were found with the same general domain structure as the human MUC2 mucin. In addition one transmembrane mucin was identified with SEA and EGF domains as found in the mammalian transmembrane mucins. These results suggest that the number of gel-forming mucins has been conserved during evolution of the vertebrates, whereas the family of transmembrane mucins has been markedly expanded in the higher vertebrates.  相似文献   

5.
6.
SEA domains are ubiquitous in large proteins associated with highly glycosylated environments. Certain SEA domains undergo intramolecular proteolysis involving a nucleophilic attack of a serine hydroxyl group on the preceding glycine carbonyl. The mucin-1 (MUC1) SEA domain has been extensively investigated as a model of intramolecular proteolysis. Since neither a general base, a general acid, nor an oxyanion hole could be identified in MUC1 SEA, it has been suggested that proteolysis is accelerated by a non-planarity of the scissile peptide bond imposed by protein folding. A reactant distorted peptide bond has been also invoked to explain the autoproteolysis of several unrelated proteins. However, the only evidence of peptide distortion in MUC1 SEA stems from molecular dynamic simulations of the reactant modeled upon a single NMR structure of the cleaved product. We report the first high-resolution X-ray structure of cleaved MUC1 SEA. Structural comparison with uncleaved SEA domains suggests that the number of residues evolutionarily inserted in the cleaved loop of MUC1 SEA precludes the formation of a properly hydrogen-bonded beta turn. By sequence analysis, we show that this conformational frustration is shared by all known cleaved SEA domains. In addition, alternative conformations of the uncleaved precursor could be modeled in which the scissile peptide bond is planar. The implications of these structures for autoproteolysis are discussed in the light of the previous research on autoproteolysis.  相似文献   

7.
Mucin genes encode a family of the largest expressed proteins in the human genome. The proteins are highly substituted with O-linked oligosaccharides that greatly restrict access to the peptide backbones. The genomic organization of the N-terminal, O-glycosylated, and C-terminal regions of most of the mucins has been established and is available in the sequence databases. However, much less is known about the fate of their exposed protein regions after translation and secretion, and to date, detailed proteomic studies complementary to the genomic studies are rather limited. Using mucins isolated from cultured human airway epithelial cell secretions, trypsin digestion, and mass spectrometry, we investigated the proteome coverage of the mucins responsible for the maintenance and protection of the airway epithelia. Excluding the heavily glycosylated mucin domains, up to 85% coverage of the N-terminal region of the gel-forming mucins MUC5B and MUC5AC was achieved, and up to 60% of the C-terminal regions were covered, suggesting that more N- and sparsely O-glycosylated regions as well as possible other modifications are available at the C-terminus. All possible peptides from the cysteine-rich regions that interrupt the heavily glycosylated mucin domains were identified. Interestingly, 43 cleavage sites from 10 different domains of MUC5B and MUC5AC were identified, which possessed a non-tryptic cleavage site on the N-terminal end of the peptide, indicating potential exposure to proteolytic and/or "spontaneous cleavages". Some of these non-tryptic cleavages may be important for proper maturation of the molecule, before and/or after secretion. Most of the peptides identified from MUC16 were from the SEA region. Surprisingly, three peptides were clearly identified from its heavily glycosylated regions. Up to 25% coverage of MUC4 was achieved covering seven different domains of the molecule. All peptides from the MUC1 cytoplasmic domain were detected along with the three non-tryptic cleavages in the region. Only one peptide was identified from MUC20, which led us to successful antisera raised against the molecule. Taken together, this report represents our current efforts to dissect the complexities of mucin macromolecules. Identification of regions accessible to proteolysis can help in the design of effective antibodies and points to regions that might be available for mucin-protein interactions and identification of cleavage sites will enable understanding of their pre- and post-secretory processing in normal and disease environments.  相似文献   

8.
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).  相似文献   

9.
The gel-forming mucins are large and heavily O-glycosylated proteins which build up mucus gels. The recombinant production of full-length gel-forming mucins has not been possible to date. In order to study mucin biosynthesis and biochemistry, we and others have taken the alternative approach of constructing different recombinant proteins consisting of one or several domains of these large proteins and expressing them separately in different cell lines. Using this approach, we have determined that MUC2, the intestinal gel-forming mucin, dimerizes via its C-terminal cysteine-knot domain and also trimerizes via one of the N-terminal von Willebrand D domains. Both of these interactions are disulfide bond mediated. Via this assembly, a molecular network is built by which the mucus gel is formed. Here we discuss not only the functional understanding obtained from studies of the recombinant proteins, but also highlight the difficulties encountered when these proteins were produced recombinantly. We often found an accumulation of the proteins in the ER and consequently no secretion. This was especially apparent when the cysteine-rich domains of the N- and C-terminal parts of the mucins were expressed. Other proteins that we constructed were either not secreted or not expressed at all. Despite these problems, the knowledge of mucin biosynthesis and assembly has advanced considerably through the studies of these recombinant proteins.  相似文献   

10.
SEA (s ea urchin sperm protein, e nterokinase, a grin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor‐type protein phosphatase IA‐2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA‐2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan‐like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single‐cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε‐sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin‐like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin‐like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans.  相似文献   

11.
Mucins are macromolecules lying the cells in contact with external environment and protect the epithelium against constant attacks such as digestive fluids, microorganisms, pollutants, and toxins. Mucins are the main components of mucus and are synthesized and secreted by specialized cells of the epithelium (goblet cells, cells of mucous glands) or non mucin-secreting cells. Human mucin genes show common features: large size of their mRNAs, large nucleotide tandem repeat domains, complex expression both at tissular and cellular level. Since 1987, 21 MUC symbols have been used to designate genes encoding O-glycoproteins containing tandem repeat domains rich in serine, threonine and proline. Some of these genes encode true mucins while others encode non mucin adhesion O-glycoproteins. In this paper, we propose a classification based on sequence similarities and expression areas. Two main families can be distinguished: secreted mucins or gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6), and membrane-bound mucins (MUC1, MUC3, MUC4, MUC12, MUC17). Muc-deficient mice will provide important models in the study of functional relationships between these two mucin families.  相似文献   

12.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

13.
Zyxin is an actin regulatory protein that is concentrated at sites of actin–membrane association, particularly cell junctions. Zyxin participates in actin dynamics by binding VASP, an interaction that occurs via proline-rich N-terminal ActA repeats. An intramolecular association of the N-terminal LIM domains at or near the ActA repeats can prevent VASP and other binding partners from binding full-length zyxin. Such a head–tail interaction likely accounts for how zyxin function in actin dynamics, cell adhesion, and cell migration can be regulated by the cell. Since zyxin binding to several partners, via the LIM domains, requires phosphorylation, it seems likely that zyxin phosphorylation might alter the head–tail interaction and, thus, zyxin activity. Here we show that zyxin point mutants at a known phosphorylation site, serine 142, alter the ability of a zyxin fragment to directly bind a separate zyxin LIM domains fragment protein. Further, expression of the zyxin phosphomimetic mutant results in increased localization to cell–cell contacts of MDCK cells and generates a cellular phenotype, namely inability to disassemble cell–cell contacts, precisely like that produced by expression of zyxin mutants that lack the entire regulatory LIM domain region. These data suggest that zyxin phosphorylation at serine 142 results in release of the head–tail interaction, changing zyxin activity at cell–cell contacts.  相似文献   

14.
In vivo glycosylation of mucin tandem repeats.   总被引:4,自引:0,他引:4  
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.  相似文献   

15.
Gauthier E  Guo X  Mohandas N  An X 《Biochemistry》2011,50(21):4561-4567
The bulk of the red blood cell membrane proteins are partitioned between two multiprotein complexes, one associated with ankyrin R and the other with protein 4.1R. Here we examine the effect of phosphorylation of 4.1R on its interactions with its partners in the membrane. We show that activation of protein kinase C in the intact cell leads to phosphorylation of 4.1R at two sites, serine 312 and serine 331. This renders the 4.1R-associated transmembrane proteins GPC, Duffy, XK, and Kell readily extractable by nonionic detergent with no effect on the retention of band 3 and Rh, both of which also interact with 4.1R. In solution, phosphorlyation at either serine suppresses the capacity of 4.1R to bind to the cytoplasmic domains of GPC, Duffy, and XK. Phosphorylation also exerts an effect on the stability in situ of the ternary spectrin-actin-4.1R complex, which characterizes the junctions of the membrane skeletal network, as measured by the enhanced competitive entry of a β-spectrin peptide possessing both actin- and 4.1R-binding sites. Thus, phosphorylation weakens the affinity of 4.1R for β-spectrin. The two 4.1R phosphorylation sites lie in a domain flanked in the sequence by the spectrin- and actin-binding domain and a domain containing the binding sites for transmembrane proteins. It thus appears that phosphorylation of a regulatory domain in 4.1R results in structural changes transmitted to the functional interaction centers of the protein. We consider possible implications of our findings for the altered membrane function of normal reticulocytes and sickle red cells.  相似文献   

16.
Branching morphogenesis is a central event during the development of kidneys, lungs, and other organs. We previously generated a monoclonal antibody, 3D2-E9, that inhibited branching morphogenesis and caused widespread apoptosis. We now report the purification of its antigen and cloning of its full-length cDNA. Its cDNA encodes an integral membrane protein that contains four cadherin-like ectodomains and a thrice tandemly repeated region enriched in threonine, serine, and proline, similar to those of mucins. We thus term this protein mu-protocadherin, reflecting the hybrid nature of its extracellular region. mu-Protocadherin is expressed in two forms that are developmentally regulated, with the shorter isoform lacking the mucin-like repeats. Expression of the long isoform in heterologous cells results in adhesion of the expressing cells, suggesting that it is a new cell adhesion molecule. mu-Protocadherin contains both N and O glycosylations. It is expressed at lateral and basal surfaces of epithelia during kidney and lung development and is located in coated pits. Colocalization of mu-protocadherin with beta-catenin was noted primarily at the junction of the lateral and basal membrane. The cytoplasmic domain contains four proline-rich regions, similar to SH3 binding regions. Thus, it is likely that adhesive interactions mediated by mu-protocadherin induce signaling events that regulate branching morphogenesis.  相似文献   

17.
The regulation of membrane trafficking is thought to be predominantly under the control of agonist-receptor transduction pathways. In the present study, osmomechanical stress due to swelling, a condition often accompanying cell activation, was shown to induce multiple membrane trafficking pathways in polarized absorptive epithelial cells in the absence of agonists. Osmomechanical stress activated rapidly (seconds) pathways of calcium-dependent membrane insertion into the basolateral domain, pathways of calcium-independent membrane retrieval from the basolateral domain, and a novel pathway of transcytosis (transcellular) between basolateral and apical cell domains. These pathways appear to underlie the transfer and regulation of transport proteins amongst cell compartments. This broad affect of osmomechanical stress on trafficking pathways may reflect a global mechanism for redistribution of transport proteins and other membrane components amongst cell compartments during states of mechanical stress.  相似文献   

18.
Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom–up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom–up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.  相似文献   

19.
Enterotoxins of Staphylococcus aureus are among the most common causes of food poisoning. Acting as superantigens they intoxicate the organism by causing a massive uncontrolled T cell activation that ultimately may lead to toxic shock and death. In contrast to our detailed knowledge regarding their interaction with the immune system, little is known about how they penetrate the epithelial barrier to gain access to their targets. We therefore studied the uptake of two staphylococcal enterotoxins (SEs), SEA and SEB, using organ cultured porcine jejunal explants as model system. Attachment of both toxins to the villus surface was scarce and patchy compared with that of cholera toxin B (CTB). SEA and SEB also bound to microvillus membrane vesicles in vitro, but less efficiently than CTB, and the binding was sensitive to treatment with endoglycoceramidase II, indicating that a glycolipid, possibly digalactosylceramide, acts as cell surface receptor at the brush border. Both SEs partitioned poorly with detergent resistant membranes (DRMs) of the microvillus, suggesting a weak association with lipid raft microdomains. Where attachment occurred, cellular uptake of SEA and SEB was also observed. In enterocytes, constitutive apical endocytosis normally proceeds only to subapical early endosomes present in the actomyosin-rich “terminal web” region. But, like CTB, both SEA and SEB penetrated deep into the cytoplasm. In conclusion, the data show that after binding to the enterocyte brush border SEA and SEB perturb the apical membrane trafficking, enabling them to engage in transcytosis to reach their target cells in the subepithelial lamina propria.  相似文献   

20.
The paired spermatozoa of the dytiscid beetles Dytiscus marginalis and Hydaticus seminiger were studied by electron microscopy with the aim of examining whether the regions of the cell membrane in the zones of sperm conjugation might differ from other regions and to explore whether these cells had any other specialized domains of the cell membrane that could be recognized by the freeze-fracturing technique. The spermatozoa are conjugated along one side of the sperm head and proximal tail portion, called the ventral side. The cell membrane was seen to contain tightly packed intramembranous particles (IMPs) that were predominantly located in the external membrane face (the E-face). In thin sections the cell membrane had a ladder-like appearance at these regions and a specialized type of glycocalyx seen as a fluffy material containing granules. Other specialized membrane domains could also be recorded: a ribbon of particles in the protoplasmic face (P-face) of the dorsal side of the spermatozoon at the proximal tail portion and regularly arranged particle rows in the P-face of the distal tail portion. These domains corresponded to regions where the glycocalyx is prominent. Both the E-face and the P-face of the cell membrane were seen to contain numerous intramembranous particles, which suggests an active function for both membrane leaflets; this is in contrast to the situation in most cells where the particles are mainly in the P-face. The functions of the intramembranous particles in the specialized domains of the cell membrane remains unknown. Some particles may represent receptors or ion gates, others proteins with a mechanical function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号