首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of aromatic amino acid pools in Escherichia coli K-12   总被引:34,自引:27,他引:7       下载免费PDF全文
Phenylalanine, tyrosine, and tryptophan were taken up into cells of Escherichia coli K-12 by a general aromatic transport system. Apparent Michaelis constants for the three amino acids were 4.7 x 10(-7), 5.7 x 10(-7), and 4.0 x 10(-7)m, respectively. High concentrations (> 0.1 mm) of histidine, leucine, methionine, alanine, cysteine, and aspartic acid also had an affinity for this system. Mutants lacking the general aromatic transport system were resistant to p-fluorophenylalanine, beta-2-thienylalanine, and 5-methyltryptophan. They mapped at a locus, aroP, between leu and pan on the chromosome, being 30% cotransducible with leu and 43% cotransducible with pan. Phenylalanine, tyrosine, and tryptophan were also transported by three specific transport systems. The apparent Michaelis constants of these systems were 2.0 x 10(-6), 2.2 x 10(-6), and 3.0 x 10(-6)m, respectively. An external energy source, such as glucose, was not required for activity of either general or specific aromatic transport systems. Azide and 2,4-dinitrophenol, however, inhibited all aromatic transport, indicating that energy production is necessary. Between 80 and 90% of the trichloroacetic acid-soluble pool formed from a particular exogenous aromatic amino acid was generated by the general aromatic transport system. This contribution was abolished when uptake was inhibited by competition by the other aromatic amino acids or by mutation in aroP. Incorporation of the former amino acid into protein was not affected by the reduction in its pool size, indicating that the general aromatic transport system is not essential for the supply of external aromatic amino acids to protein synthesis.  相似文献   

2.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

3.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

4.
l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 x 10(-5)m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 x 10(-5)m in yeast phase and 2 x 10(-5)m in mycelial phase cells. Transport of l-leucine at an external concentration of 10(-5)m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the alpha-amino group, or modification of the alpha-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 x 10(-5) to 6.2 x 10(-5)m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine.  相似文献   

5.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

6.
Changes in amino acid permeation during sporulation   总被引:8,自引:6,他引:2       下载免费PDF全文
Changes in amino acid uptake in Bacillus licheniformis and in the amino acid pools of three Bacillus species were investigated, by use of cells from different stages of the life cycle. B. licheniformis contains catalytic uptake systems for all of the 10 amino acids studied. The apparent maximal velocities of uptake decreased during sporulation but did not fall below the range observed for other microorganisms. In sporulating cells, the apparent affinity constants of the uptake systems for individual amino acids remained about the same as in growing cells, i.e., from 2 x 10(-7)m to 7 x 10(-6)m, whereas, in some cases, the apparent maximal velocities decreased significantly. Because the velocity of uptake showed an atypical dependence on substrate concentration, it was postulated that these cells contain two or more uptake systems for each amino acid. Only one of these systems appeared to be operative at a substrate concentration below 10(-6)m. Working at these low substrate concentrations, catalytic activities producing a net efflux of amino acids were demonstrable in vegetative cells in the presence of chloramphenicol, but these exit systems were lost during sporulation. A pool formed by the addition of radioactive algal hydrolysate will exchange with the external medium in vegetative cells but not in sporulating cells. Glutamic acid and alanine comprise at least 60% of the amino acid pool of B. licheniformis A-5, B. subtilis 23, and B. cereus T during all stages of growth and sporulation. The concentrations of the other amino acids in the pool varied extensively, but reflected, in general, the amino acid turnover known to occur during sporulation.  相似文献   

7.
The uptake of L-4-azaleucine was examined in Escherichia coli K-12 strains to determine the systems that serve for its accumulation. L-4=Azaleucine in radio-labeled form was synthesized and resolved by the action of hog kidney N-acylamino-acid amidohydrolase (EC 3.5.1.B) on the racemic alpha-N-acetyl derivative of DL-[dimethyl-14C]4-azaleucine. L-4-Azaleucine is taken up in E. coli by energy-dependent processes that are sensitive to changes in the pH and to inhibition by leucine and the aromatic amino acids. Although a single set of kinetic parameters was obtained by kinetic experiments, other evidence indicates that transport systems for both the aromatic and the branched-chain amino acids serve for azaleucine. Azaleucine uptake in strain EO317, with a mutation leading to derepression and constitutive expression of branched-chain amino acid (LIV) transport and binding proteins, was not repressed by growth with leucine as it was in parental strain EO300. Lesions in the aromatic amino acid transport system, aroP, also led to changes in the regulation of azaleucine uptake activity when cells were grown on phenylalanine. Experiments on the specificity of azaleucine uptake and exchange experiments with leucine and phenylalanine support the hypothesis that both LIV and aroP systems transport azaleucine. The ability of external azaleucine to exchange rapidly with intracellular leucine may be an important contributor to azaleucine toxicity. We conclude from these and other studies that at least four other process may affect azaleucine sensitivity: the level of branched-chain amino acid biosynthetic enzymes; the level of leucine, isoleucine, and valine transport systems; the level of the aromatic amino acid, aroP, uptake system; and, possibly, the ability of the cell to racemize D and L amino acids. The relative importance of these processes in azaleucine sensitivity under various conditions is not known precisely.  相似文献   

8.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

9.
Amino Acid Transport in Pseudomonas aeruginosa   总被引:15,自引:8,他引:7       下载免费PDF全文
Properties of the transport systems for amino acids in Pseudomonas aeruginosa were investigated. Exogenous (14)C-labeled amino acids were shown to equilibrate with the internal native amino acid pool prior to incorporation into protein. When added at low external concentrations, the majority of the amino acids examined entered the protein of the cell unaltered. The rates of amino acid transport, established at low concentrations with 18 commonly occurring amino acids, varied as much as 40-fold. The transport process became saturated at high external amino acid concentrations, was temperature-sensitive, and was inhibited by sodium azide and iodoacetamide. Intracellular to extracellular amino acid ratios of 100- to 300-fold were maintained during exponential growth of the population in a glucose minimal medium. When the medium became depleted of glucose, neither extracellular nor intracellular amino acids could be detected.  相似文献   

10.
Specificity of transinhibition of amino acid transport in neurospora   总被引:8,自引:0,他引:8  
Amino acid transport systems I and III in Neurospora are inhibited by amino acids in the intracellular pool (transinhibition). The transinhibition is system specific. The ability of an amino acid to transinhibit a transport system is highly correlated with its affinity for the system. The significance of the system specificity of transinhibition is discussed.  相似文献   

11.
Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two K(m) values for lysine. System I (K(m) approximately 5 x 10(-6) molar; V(max) approximately 180 nanomoles per gram fresh weight per hour) and system II (K(m) approximately 10(-4) molar; V(max) approximately 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for K(i) similar to the respective K(m) values.These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells.  相似文献   

12.
The quantitative content of three transport systems for aromatic amino acids in cells of Halobacterium salinarium was measured: the common system (K m is about 10-6 M) and two tyrosine-specific systems with high and low affinity (K m is about 10-8 and 10-5 M, respectively). To determine the activity of each of three systems separately, a method was developed based on the selective phenylalanine effect on these activities. When phenylalanine exeeds [14C]tyrosine by four to sixforld, it inhibits competitively the activity of the common system, and its 50- to 100-fold molar excess is inhibitory in a non-competitive way for the specific high affinity system (HAT system). The specific low affinity system (LAT system) is practically insensitive to phenylalanine. The activities of tyrosine-specific transport systems are slightly dependent on the culture age, and the observed decrease in transport activity during growth is due mainly to the decreased content of the common system. The HAT system formation is regulated by the repression type, and the effectors are aromatic amino acids especially tyrosine itself. The physiological sense of the tyrosine transport system's multiplicity in H. salinarium is discussed.  相似文献   

13.
The kinetics of isoleucine, leucine, and valine transport in Escherichia coli K-12 has been analyzed as a function of substrate concentration. Such analysis permits an operational definition of several transport systems having different affinities for their substrates. The identification of these transport systems was made possible by experiments on specific mutants whose isolation and characterization is described elsewhere. The transport process with highest affinity was called the "very-high-affinity"process. Isoleucine, leucine, and valine are substrates of this transport process and their apparent K(m) values are either 10(-8), 2 x 10(-8), or 10(-7) M, respectively. Methionine, threonine, and alanine inhibit this transport process, probably because they are also substrates. The very-high-affinity transport process is absent when bacteria are grown in the presence of methionine, and this is due to a specific repression. Methionine and alanine were also found to affect the pool size of isoleucine and valine. Another transport process is the "high-affinity" process. Isoleucine, leucine, and valine are substrates of this transport process, and their apparent K(m) value is 2 x 10(-6) M for all three. Methionine and alanine cause very little or no inhibition, whereas threonine appears to be a weak inhibitor. Several structural analogues of the branched-chain amino acids inhibit the very-high-affinity or the high-affinity transport process in a specific way, and this confirms their existence as two separate entities. Three different "low-affinity" transport processes, each specific for either isoleucine or leucine or valine, show apparent K(m) values of 0.5 x 10(-4) M. These transport processes show a very high substrate specificity since no inhibitor was found among other amino acids or among many branched-chain amino acid precursors or analogues tried. The evolutionary significance of the observed redundancy of transport systems is discussed.  相似文献   

14.
The regulation of the aromatic amino acid transport systems was investigated. The common (general) aromatic transport system and the tyrosine-specific transport system were found to be subject to repression control, thus confirming earlier reports. In addition, tryosine- and tryptophan-specific transport were found to be enhanced by growth of cells with phenylalanine. The repression and enhancement of the transport systems was abolished in a strain carrying an amber mutation in the regulator gene tyrR. This indicates that the tyrR gene product, which was previously shown to be involved in regulation of aromatic biosynthetic enzymes, is also involved in the regulation of the aromatic amino acid transport systems.  相似文献   

15.
Uptake and utilization of glutamic acid by Cryptococcus albidus   总被引:3,自引:2,他引:1       下载免费PDF全文
Cryptococcus albidus utilizes glutamate as a sole carbon source. The kinetics of uptake of this amino acid were studied. l-Glutamic acid was taken up by two saturable systems: a high affinity system with a Michaelis constant (K(m)) of 1.15 x 10(-5) M and a V(max) of 0.049 mumol per mg per h and a low affinity system with a K(m) of 2.5 x 10(-3) M and a V(max) of 3.61 mumol per mg per h. Both systems possessed characteristics of active transport which were dependent on temperature and pH and which required metabolic energy. Uptake was inhibited at 37 C but the temperature-sensitive step was reversible. Chemical fractionation of cells with 5% trichloroacetic acid showed that glutamic acid initially entered a soluble pool which decreased after 1 h as the amino acid was incorporated into the protein and nucleic acid fractions of the yeast. Some of the glutamate was completely oxidized and could be recovered as (14)CO(2). Therefore, the amino acid was also used as an energy source.  相似文献   

16.
Wheat (Triticum aestivum L. var. Lew) embryonic axes take up externally supplied radioactive amino acid (from a solution greater than 2 millimolar) such that the specific radioactivity of the total internal amino acid rapidly reaches that of the external solution. Nevertheless, incorporation of radioactive amino acid into protein increases steadily as the concentration of external amino acid is increased, indicating that the amino acid that is precursor to protein synthesis is not in equilibrium with the total internal amino acid pool. When the external source of amino acid is removed, incorporation of radiolabeled amino acid into protein continues at a rate comparable to that of embryos maintained in the radioactive solution. In explanation of these data, it is suggested that there are two separate cytoplasmic pools of amino acids, one a protein synthesis precursor pool, and the second, an expandable pool into which exogenous radioactive amino acids are taken up. The protein synthesis pool is fed at a limited rate from the expandable pool and at a far greater rate from an endogenous source. As a consequence, the specific activity of the amino acid that is the precursor for protein synthesis is considerably below that of the total internal pool and is determined by the rate of movement into the protein synthesis pool from the expanded radioactive cytoplasmic pool.

The rate of movement of amino acids from the expandable pool into the protein synthesis pool increases approximately 5-fold during the initial 4.5 hours of embryo germination. When this change is considered in analyzing the relative rates of protein synthesis, there is probably no more than a 2-fold increase in protein synthetic capacity between embryos germinated for 1.5 and 4.5 hours. The leveling off of the change in transport capacity after 4.5 hours suggests that the earlier increase in the rate of this process may be a necessary step before the embryos can begin to accelerate their growth rate.

  相似文献   

17.
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,K-ATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.  相似文献   

18.
Amino Acid Pool Formation in Pseudomonas aeruginosa   总被引:7,自引:5,他引:2       下载免费PDF全文
The accumulation and behavior of various amino acids in the pool of Pseudomonas aeruginosa (ATCC 9027) were investigated. Patterns of pool formation and maintenance varied with different amino acids tested and were dependent, to a considerable extent, upon the ability of the organism to catabolize the particular amino acid. The establishment of steady-state amino acid pool levels depended upon the activity of the amino acid permease involved and upon the rate of protein synthesis. The presence of a relatively large specific amino acid pool did not affect the formation of a pool of a structurally different amino acid, and a preformed steady-state pool was not displaced by structurally unrelated amino acids. Steady-state amino acid pools decreased rapidly in the presence of inhibitors of energy metabolism and at 0 C. Steady-state internal amino acid pools were found to be in equilibrium with the corresponding external amino acid, present at low levels. A multiplicity of proline pools was demonstrated.  相似文献   

19.
The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained by the kinetic properties of glutamate and glutamine transport (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:2755-2761, 1987). At alkaline pH the rate of growth in the absence of glutamine is limited by the capacity to accumulate glutamate due to the decreased availability of glutamic acid, the transported species of the glutamate-glutamine transport system. Kinetic analysis of leucine and valine transport shows that the maximal rate of uptake of these amino acids by the branched-chain amino acid transport system is 10 times higher in S. lactis cells grown on synthetic medium containing amino acids than in cells grown in complex broth. For cells grown on synthetic medium, the maximal rate of transport exceeds by about 5 times the requirements at maximum specific growth rates for leucine, isoleucine, and valine (on the basis of the amino acid composition of the cell). The maximal rate of phenylalanine uptake by the aromatic amino acid transport system is in small excess of the requirement for this amino acid at maximum specific growth rates. Analysis of the internal amino acid pools of chemostat-grown cells indicates that passive influx of (some) aromatic amino acids may contribute to the net uptake at high dilution rates.  相似文献   

20.
Carefully isolated, metabolically competent rat brain synaptosomes accumulate acidic amino acid neurotransmitters down to very low external levels. This supports the suggestion that nerve endings are involved in terminating transmission at the synapses and in maintaining low levels of these molecules in the external environment in the brain. At saturating levels of acidic amino acids, the rate of inward and outward movements of the Na+-amino acid complex (exchange) is much faster than the net uptake. The transmembrane gradients of aspartate and glutamate approach each other under all conditions explored which indicates that these two amino acids share the same transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号