首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Karni L  Aloni B 《Annals of botany》2002,90(5):607-612
The processes of pollen grain development and germination depend on the uptake and metabolism of pollen sugars. In pepper (Capsicum annuum L.), initial sugar metabolism includes sucrose hydrolysis by invertase and subsequent phosphorylation of glucose and fructose by hexose kinases. The main objective of this study was to investigate changes in fructokinase (EC 2.7.1.4) and hexokinase (EC.2.7.1.1) activities in pepper flowers during their development, and to study the possible roles of these enzymes in determining pollen germination capacity under high temperature and under CO(2) enrichment, previously shown to modify sugar concentrations in pepper pollen (Aloni et al., 2001 Physiologia Plantarum 112: 505-512). Fructokinase (FK) activity was predominant in pepper pollen, and increased during pollen maturation. Pollen hexokinase (HK) activity was low and did not change throughout pollen development. High-temperature treatment (day/night, 32/26 degrees C) of pepper plants reduced the percentage of pollen that germinated compared with that under normal temperatures (26/22 degrees C), and concomitantly reduced the activity of FK in mature pollen. High temperature also reduced FK and HK activity in the anther. Under high ambient CO(2) (800 micro l l(-1)) pollen FK activity was enhanced. The results suggest that pollen and anther FK may play a role in the regulation of pollen germination, possibly by providing fructose-6-phosphate for glycolysis, or through conversion to UDP-glucose (UDPG) to support the biosynthesis of cell wall material for pollen tube growth. High temperature stress and CO(2) enrichment may influence pollen germination capacity by affecting these pathways.  相似文献   

2.
Continuous exposure of tomato 'Trust' to high temperatures (day/night temperatures of 32/26 degrees C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism in various parts of the anther during its development. Under control, favourable temperature conditions (28/22 degrees C), starch accumulated in the pollen grains, where it reached a maximum value 3 d before anthesis; it then diminished towards anthesis. During anther development, the concentration of total soluble sugars gradually increased in the anther walls and in the pollen grains (but not in the locular fluid), reaching a maximum at anthesis. Continuous exposure of the plants to high temperatures (32/26 degrees C) prevented the transient increase in starch concentration and led to decreases in the concentrations of soluble sugars in the anther walls and the pollen grains. In the locular fluid, however, a higher soluble sugar concentration was detected under the high-temperature regime throughout anther development. These results suggest that a major effect of heat stress on pollen development is a decrease in starch concentration 3 d before anthesis, which results in a decreased sugar concentration in the mature pollen grains. These events possibly contribute to the decreased pollen viability in tomato.  相似文献   

3.
R.R. Walker  J.S. Hawker 《Phytochemistry》1976,15(12):1881-1884
During a 9 day period after anthesis the concentration of reducing sugars showed a 6-fold increase in fruits of Citrullus lanatus, and a 2-fold increase in those of Capsicum annuum. These increases were associated with acid invertase, the specific activity of which was high in ovaries at anthesis and which increased 5-fold in watermelon and 1.5-fold in pepper during the same period. Sucrose synthase apparently plays only a minor role in sucrose hydrolysis. Changes in sugar concentrations and both acid invertase and sucrose synthase activities were similar in fruits developed both after pollination or hormone (NAA) treatment of ovaries. In non-pollinated ovaries of watermelon there was also an increase in invertase activity up to 6 days after anthesis which paralleled the increase in activity in seeded and parthenocarpic fruits. However, there was no increase in either reducing sugars or sucrose, indicating that sucrose is not imported into non-pollinated ovaries. Utilisation of reserve starch may help prolong the life of non-pollinated ovaries for up to one week after anthesis.  相似文献   

4.
Exposing pepper ( Capsicum annuum ) plants to extremely high day temperatures (HDT) (day/night temperatures of 36 ± 2/10 ± 2°C), obtained by keeping the greenhouse closed during the day to exploit solar heating, prevented the development of low night temperature (LNT) symptoms. Plants of cultivars Fiesta and Selica grown under LNTs (10 ± 2°C) and moderate day temperatures (25 ± 2°C) during winter exhibited retarded growth, reduced leaf numbers, and deformed fruits with few or no seeds. LNT caused a reduction in the number and quality of pollen grains: the reduction in pollen quality was associated with reduced starch accumulation in pollen grains at 3 days before anthesis (DBA) and a decrease of more than two-fold in total soluble sugars in the mature pollen grains. This inhibitory effect was associated with more than 50% reduction in the enzymatic activities of the cell wall-bound and soluble acid invertases that catalyze the hydrolysis of incoming sucrose molecules. All these symptoms were prevented by HDT treatment which matched the vegetative and reproductive performance of the plants to those of plants grown under optimal night temperature (ONT) conditions (day/night temperatures of 23 ± 2/18 ± 2°C). HDT also prevented the inhibitory effect of LNT on enzymatic activities of both invertases in pollen at 5 DBA and brought about the accumulation of high levels of starch in pollen at 3 DBA. The results presented could support the development of a novel procedure for producing greenhouse crops with minimum or even with no fuel consumption for heating during the winter nights in regions with bright and sunny days.  相似文献   

5.
以杂交中熟籼稻品种金优63、汕优63为供试材料,采用盆栽试验,在水稻生长前期连续喷施3次硅酸钠(Na2SiO3·9H2O),于人工气候箱内在水稻开花期进行常温(日均温26.6 ℃,日最高温度29.4 ℃)和高温(日均温33.2 ℃,日最高温度40.1 ℃)处理5 d,研究施硅在花期高温胁迫下对杂交水稻剑叶叶绿素含量、光合性能、抗氧化酶活性、丙二醛(MDA)含量、花粉活力、花药酸性转化酶活性、柱头授粉性能和结实率等的影响.结果表明: 与对照相比,施硅可显著提高高温胁迫下水稻剑叶叶绿素含量,提高净光合速率和气孔导度,减少胞间CO2浓度,增强叶片光合作用,减少MDA含量,提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性;提高花药中可溶性酸性转化酶活性和花粉活力,增加花粉囊基部裂口宽度,提高水稻每柱头上授粉总数、萌发数、花粉萌发率和萌发数大于10粒者所占的比例,降低花粉总数小于20粒者所占的比例;使金优63、汕优63结实率的降低分别减轻13.4%、14.1%.因此,在水稻生长前期喷施外源硅,可减轻水稻在开花期结实率的降低,提高杂交水稻的抗热性.  相似文献   

6.
Abortion of pepper flowers depends on the light intensity perceivedby the plant and on the amounts of sucrose taken up by the flower(Aloni B, Karni L, Zaidman Z, Schaffer AA. 1996.Annals of Botany78: 163–168). We hypothesize that changes in the activityof sucrose-cleaving enzymes within the flower ovary might beresponsible for the changes in flower abortion under differentlight conditions. In the present study we report that the activityof sucrose synthase, but not of cytosolic acid invertase, increasesin flowers of pepper plants which were exposed, for 2 d, toincreasing photosynthetically active radiation (PAR) in therange of 85–400 µmol m-2s-1at midday. Sucrose synthaseactivity increased in parallel with the increasing concentrationsof starch in the flower ovary. Feeding flower explants, preparedfrom 3-d-predarkened plants, with 100 mM sucrose for 24 h, causeda 23% increase in reducing sugars and a 2.5-fold increase instarch concentration, compared with explants fed with buffer.Likewise, feeding explants of pepper flowers with sucrose, glucose,fructose and also mannitol increased the sucrose synthase activityin the ovaries. Concomitantly, sucrose, glucose and fructose,but not mannitol, reduced the abortion of flower explants. Itis suggested that sucrose entry into the flower increases theflower sink activity by inhibiting abscission and inducing metabolicchanges, thus enhancing flower set. Pepper; Capsicum annuum L.; abscission; light; pepper flowers; sucrose; glucose; fructose; starch; acid invertase; sucrose synthase  相似文献   

7.
8.
Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.  相似文献   

9.
Accumulation of starch at expense of its free-sugar precursors was studied in the developing grains of the ‘SL-44’variety of Sorghum vulgare Pers. The content of starch gradually increased with the maturation of the grain and this increase was relatively fast until 18 days after anthesis. The daily rate of starch accumulation was at a maximum 15 days after anthesis. The content of total free sugars, reducing sugars, non-reducing sugars other than sucrose, total and non-sucrosyl fructose, and glucose also increased, reaching maximum values at 18 days after anthesis. Sucrose content gradually increased with a concomitant decrease in the activity of invertase, and sucrose was the major non-reducing sugar in the matured grains. Detached heads incubated in labelled sugars indicated that, compared to sucrose and fructose. 14C was more efficiently incorporated from glucose into grain starch, which was maximally synthesized at the mid-milky stage of grain development. Exogenous supply of NAD+ plus ATP stimulated the in vivo incorporation of 14C from sucrose to starch. The decline in the rate of starch accumulation did not synchronise with that of protein synthesis.  相似文献   

10.
Carbohydrates and carbohydrate enzymes in developing cotton ovules   总被引:2,自引:0,他引:2  
Patterns of carbohydrates and carbohydrate enzymes were investigated in developing cotton ovules to establish which of these might be related to sink strength in developing bolls. Enzymatic analysis of extracted tissue indicated that beginning 1 week following anthesis, immature cotton seeds (Gossypium hirsutum L. cv. Coker 100A glandless) accumulated starch in the tissues which surround the embryo. Starting at 15 days post anthesis (DPA), this starch was depleted and starch simultaneously appeared in the embryo. Sucrose entering the tissues surrounding the embryo was rapidly degraded, apparently by sucrose synthase; the free hexose content of these tissues reached a peak at about 20 DPA. During the first few weeks of development these tissues contained substantial amounts of hexose but little sucrose; the reverse was true for cotton embryos. Embryo sucrose content rose sharply from the end of the first week until about 20 DPA; it then remained roughly constant during seed maturation. Galactinol synthase (EC 2.4.1.x) appeared in the embryos approximately 25 days after flowering. Subsequently, starch disappeared and the galactosides raffinose and stachyose appeared in the embryo. Except near maturity, sucrose synthase (EC 2.4.1.13) activity in the embryos predominated over that of both sucrose phosphate synthase (EC 2.4.1.14) and acid invertase (EC 3.2.1.26). Activities of the latter enzymes increased during the final stages of embryo maturation. The ratio of sucrose synthase to sucrose phosphate synthase was found to be high in young cotton embryos but the ratio reversed about 45 DPA, when developing ovules cease being assimilate sinks. Insoluble acid invertase was present in developing cotton embryos, but at very low activities; soluble acid invertase was present at significant activities only in nearly mature embryos. From these data it appears that sucrose synthase plays an important role in young cotton ovule carbohydrate partitioning and that sucrose phosphate synthase and the galactoside synthesizing enzymes assume the dominant roles in carbohydrate partitioning in nearly mature cotton seeds. Starch was found to be an important carbohydrate intermediate during the middle stages of cotton ovule development and raffinose and stachyose were found to be important carbohydrate pools in mature cotton seeds.  相似文献   

11.
Developing pollen of Papaver dubium L. becomes functional and desiccation tolerant at approximately 2 to 1 days prior to anthesis, coincident with degradation of starch and a doubling of the amount of sucrose, the primary soluble carbohydrate present. When anthers were taken from flower buds at 3 days before anthesis, pollen dehisced upon exposure to the ambient air. This dried pollen did not fluoresce with the vital stain fluorescein diacetate, had increased leakage of K+, and did not swell properly in a germination medium. In contrast, pollen became functional and desiccation resistant when these young anthers were first incubated in a water-saturated atmosphere for 30 hours. Phospholipid composition revealed no major differences over the last 3 days of development. When this immature pollen was liberated mechanically and allowed to mature in humid air, starch degraded and sucrose content nearly doubled, and the grains became largely functional and dehydration tolerant. Large unilamellar vesicles were prepared from isolated phospholipids to study dehydration-induced fusion and leakage. When dried in the presence of increasing concentrations of sucrose, vesicle integrity was progressively retained. These data indicate that pollen maturation during the last 3 days of development occurred independently from the parent plant. Sucrose may play an essential role in the acquired tolerance to severe dehydration.  相似文献   

12.
Male reproductive development of rice (Oryza sativa L.) is very sensitive to drought. A brief, transitory episode of water stress during meiosis in pollen mother cells of rice grown under controlled environmental conditions induced pollen sterility. Anthers containing sterile pollen were smaller, thinner, and often deformed compared to normal anthers of well-watered plants. Only about 20% of the fully developed florets in stressed plants produced grains, compared to 90% in well-watered controls. Water stress treatments after meiosis were progressively less damaging. Levels of starch and sugars and activities of key enzymes involved in sucrose cleavage and starch synthesis were analyzed in anthers collected at various developmental stages from plants briefly stressed during meiosis and then re-watered. Normal starch accumulation during pollen development was strongly inhibited in stress-affected anthers. During the period of stress, both reducing and non-reducing sugars accumulated in anthers. After the relief of stress, reducing sugar levels fell somewhat below those in controls, but levels of non-reducing sugars remained higher than in controls. Activities of acid invertase and soluble starch synthase in stressed anthers were lower than in controls at comparable stages throughout development, during as well as after stress. Stress had no immediate effect on ADP-glucose pyrophosphorylase activity, but had an inhibitory aftereffect throughout post-stress development. Sucrose synthase activity, which was, relatively speaking, much lower than acid invertase activity, was only slightly suppressed by stress. The results show that it is unlikely that pollen sterility, or the attendant inhibition of starch accumulation, in water-stressed rice plants are caused by carbohydrate starvation per se. Instead, an impairment of enzymes of sugar metabolism and starch synthesis may be among the potential causes of this failure.  相似文献   

13.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

14.
* BACKGROUND AND AIMS: High-temperature environments with >30 degrees C during flowering reduce boll retention and yield in cotton. Therefore, identification of cotton cultivars with high-temperature tolerance would be beneficial in both current and future climates. * METHODS: Response to temperature (10-45 degrees C at 5 degrees C intervals) of pollen germination and pollen tube growth was quantified, and their relationship to cell membrane thermostability was studied in 12 cultivars. A principal component analysis was carried out to classify the genotypes for temperature tolerance. * KEY RESULTS: Pollen germination and pollen tube length of the cultivars ranged from 20 to 60 % and 411 to 903 microm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cultivar variation existed for cardinal temperatures (T(min), T(opt) and T(max)) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures calculated from the bilinear model for the 12 cultivars were 15.0, 31.8 and 43.3 degrees C for pollen germination and 11.9, 28.6 and 42.9 degrees C for pollen tube length. No significant correlations were found between pollen parameters and leaf membrane thermostability. Cultivars were classified into four groups based on principal component analysis. * CONCLUSIONS: Based on principal component analysis, it is concluded that higher pollen germination percentages and longer pollen tubes under optimum conditions and with optimum temperatures above 32 degrees C for pollen germination would indicate tolerance to high temperature.  相似文献   

15.
To determine the thermosensitive periods and physiological processes in tomato flowers exposed to moderately elevated temperatures, tomato plants (Lycopersicon esculentum Mill., cv. NC 8288) were grown at 28/22 degrees C or 32/26 degrees C day/night temperature regimes and then transferred to the opposite regime for 0-15 d before or 0-24 h after anthesis. For plants initially grown at 28/22 degrees C, moderate temperature stress before anthesis decreased the percentage of fruit set per plant, but did not clarify the thermosensitive period. The same level of stress did not significantly reduce fruit set when applied immediately after anthesis. For plants initially grown at 32/26 degrees C, fruit set was completely prevented unless a relief period of more than 5 d was provided before anthesis. The same level of stress relief for 3-24 h after anthesis also increased fruit set. Plants were most sensitive to 32/26 degrees C temperatures 7-15 d before anthesis. Microscopic investigation of anthers in plants grown continuously at high temperature indicated disruption of development in the pollen, endothecium, epidermis, and stomium. This disruption was reduced, but still observable in plants relieved from high temperature for 10 d before anthesis.  相似文献   

16.
Summary Water-homogenized stigma pellets of pearl millet and precipitates resulting from dialysis of their salt extracts were observed to: (1) chemotropically attract pearl millet pollen tubes on a sucrose-containing pollen germination and growth medium, (2) have acid invertase activity as assayed by the arsenomolybdate method, (3) hydrolyze sucrose in the pollen germination and growth medium to glucose as assayed by coupled glucose oxidation with Nitro Blue Tetrazolium, and (4) lose chemotropic and invertase activities upon heat treatment. The results indicate that the in vitro chemotropic attraction of pearl millet pollen tubes to water-homogenized stigma pellets is a response to glucose produced by homogenate-pellet-bound invertase hydrolyzing the sucrose present in the pollen germination and growth medium. Yeast and tomato invertases used as controls verified this conclusion. Water extracts of whole stigmas contained water-soluble acid invertase. The results are discussed in relation to the identification of possible in vivo chemotropic factors of pearl millet and other plants by in vitro assays.Abbreviations dH2O Deionized, house-distilled water - NBT Nitro Blue Tetrazolium, NBT-medium - PGG medium, pollen germination and growth medium (10% sucrose, 1 mM H3BO3, and 1% agarose); - WHS pellet, water-homogenized stigma pellet On Specific Cooperative Agreement 58-6612-8-002 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA  相似文献   

17.
Sucrose Synthase,Starch Accumulation,and Tomato Fruit Sink Strength   总被引:41,自引:1,他引:40       下载免费PDF全文
Wang F  Sanz A  Brenner ML  Smith A 《Plant physiology》1993,101(1):321-327
Contrasting evidence has accumulated regarding the role of acid invertase and sucrose synthase in tomato fruit sink establishment and maintenance. In this work the relationships among the activities of sucrose synthase and acid invertase, Lycopersicon esculentum Mill cv UC-82B fruit growth, and starch accumulation were analyzed in fruit at 0 to 39 d after anthesis. Sucrose synthase, but not acid invertase, was found to be positively correlated with tomato fruit relative growth rate and with starch content in the pericarp tissue. A similar association between sucrose synthase activity and starch accumulation was also evident in the basal portion of the stem. Heat-shock treatments, which inhibited the increase in sucrose synthase activity at the beginning of the light period and had no effect on acid invertase activity, were used to examine the importance of sucrose synthase in relation to sucrose metabolism and starch synthesis. After the heat-shock treatment, concomitantly with the suppressed sucrose synthase activity relative to the controls, there was a reduction in sucrose cleavage and starch accumulation. These data substantiate the conclusion that, during the early phases of tomato fruit development, sucrose synthase rather than acid invertase is the dominant enzyme in metabolizing imported sucrose, which in turn plays a part in regulating the import of sucrose into the fruit.  相似文献   

18.
Abscission of pepper flowers is enhanced under conditions oflow light and high temperature. Our study shows that pepperflowers accumulate assimilates, particularly in the ovary, duringthe day time, and accumulate starch, which is then metabolizedin the subsequent dark period. With the exception of the petals,the ovary contains the highest total amounts of sugars and starch,compared with other flower parts and contains the highest totalactivity, as well as activity calculated on fresh mass basis,of sucrose synthase, in accordance with the role of this enzymein starch biosynthesis. Low light intensity or leaf removaldecreased sugar accumulation in the flower and subsequentlycaused flower abscission. The threshold of light intensity fordaily sugar accumulation in the sink leaves was much lower thanin flowers, resulting in higher daytime accumulation of sugarsin the sink leaves than in the adjacent flower buds under anylight intensity, suggesting a competition for assimilates betweenthese organs. Flowers of bell pepper cv. ‘Maor’and ‘899’ (sensitive to abscission) accumulatedless soluble sugars and starch under shade than the flowersof bell pepper cv. ‘Mazurka’ and of paprika cv.‘Lehava’ (less sensitive). The results suggest thatthe flower capacity to accumulate sugars and starch during theday is an important factor in determining flower retention andfruit set. Pepper; Capsicum annuum L.; abscission; shading; pepper flowers; ovary; leaves; sugars; starch; acid invertase; sucrose synthase  相似文献   

19.
The free sugar in the mature pollen grains of Camellia japonica is almost all sucrose and the sucrose content decreases rapidly during pollen growth. The activity of soluble invertase increases during culturing and a high constant activity was found at the later stages of pollen tube growth. By contrast, the level of sucrose synthetase activity remains constant during pollen growth and that of wall-bound invertase activity is very low. Cycloheximide has little effect on the activity of these enzymes. Exogenous sucrose or glucose was simultaneously incorporated into the pollen grains when they absorbed water and swelled. The free sugar levels in growing pollen depend on the nature of the exogenous sugar. The sugar metabolism in the pollen at the stage of germination differs from that during tube growth, the latter being particularly influenced by exogenous sugar.  相似文献   

20.
Studies designed to investigate the cellular pathway of phloem unloading were conducted on two tomato lines with either high or low fruit invertase activities. Experiments were based on determination of the degree to which 3H label from [3H]-(fructosyl)-sucrose was randomized between fructose and glucose following exposure of excised fruit to a pulse of labelled sucrose delivered through pedicels. Fruit from the low invertase line harvested 10, 20 and 40 d after anthesis had similar sucrose uptake kinetics to the high invertase line. A positive correlation was found between sucrose synthase activity and sucrose uptake in both low and high invertase lines. In contrast, no correlation was observed between acid or neutral invertase activities and sucrose uptake. Within the putative apoplasmic sap collected from fruit, label in [3H]-(fructosyl)-sucrose was randomized between the free hexoses and sucrose hexose moieties. Label asymmetry was retained in sucrose on arrival within the tissues. Randomization patterns were similar in both the low and high acid invertase lines. These data support the view that sucrose imported into the fruit was not exposed to extracellular hydrolysis. This suggests that movement from the phloem is likely to occur predominantly through a symplastic pathway. About 25% of the sucrose taken up by the fruit was converted into starch regardless of fruit age, suggesting that starch turnover remains constant throughout fruit development and that starch synthesis was dependent on sucrose supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号