首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petunia (Petunia hybrida Vilm. cv. ‘Snowstorm') plants were grown in saline solution (NaCl, MgCl2, and/or CaCl2) of 0, 1, 2, and 3 bars osmotic pressures. Pollen viability was tested by tetrazolium chloride staining and by germination (by the hanging drop method, using 15 % sucrose and 0.01 % boric acid as the nutrient medium, at 27 ± 1 C). Pollen viability decreased with increased salinity. Pollen from plants grown in single salt solutions of NaCl, MgCl2, and CaCl2 (each at 0, 1, 2, or 3 bars osmotic pressure) was germinated in base culture medium. Pollen viability decreased more with NaCl than with MgCl2 or CaCl2. In vitro studies of the effects of three salts, viz., NaCl, MgCl2, and CaCl2, on pollen germination and tube growth showed that NaCl inhibited germination and pollen tube growth more than did MgCl2 or CaCl2. MgCl2 was least injurious, and even promoted tube growth at 0.5 and 0.75 bars osmotic pressure. Adding low concentrations of MgCl2 reduced the toxic effect of NaCl and increased the percentage of germination. CaCl2 reduced the effect of NaCl less than did MgCl2. We conclude that specific ion effects were more important than osmotic pressure.  相似文献   

2.
3.
Salinity is one of the major abiotic stresses affecting arable crops worldwide, and is the most stringent factor limiting plant distribution and productivity. In the present study, the possible use of in vitro culture to evaluate the growth and physiological responses to salt-induced stress in cultivated explants of Citrus macrophylla was analyzed. For this purpose, micropropagated adult explants were grown in proliferation and rooting media supplemented with different concentrations of NaCl. All growth parameters were decreased significantly by these NaCl treatments; this was accompanied by visible symptoms of salt injury in the proliferated shoots from 60 mM NaCl and in the rooted shoots from 40 mM NaCl. Malondialdehyde (MDA) increased with increasing salinity in proliferated shoots, indicating a rising degree of membrane damage. The concentration of total chlorophyll significantly decreased in the presence of NaCl, and this effect was more pronounced in the rooted explants. The Na+ and Cl concentrations in the explants increased significantly with the salinity level, but Cl levels were higher in the proliferated explants than in the rooted explants. For osmotic adjustment, high concentrations of compatible solutes (proline and quaternary ammonium compounds—QAC) accumulated in salt-stressed plants in proliferation, but differences were not observed in rooted explants. In proliferation, proline and QAC were highly correlated with the sodium and chloride concentrations in the explants, indicating a possible role of these compounds in osmotic adjustment. The plant concentrations of NO3, K+, Mg2+, Ca+ and Fe were also affected by the NaCl concentration of the medium. We suggest that the important deleterious effects in the in vitro explants of Citrus macrophylla grown at increasing NaCl concentrations were due mainly to toxic effects of saline ions, particularly Cl, at the cellular level.  相似文献   

4.
Osmotic Effects on Membrane Permeability in a Marine Bacterium   总被引:1,自引:0,他引:1       下载免费PDF全文
When cells of Alteromonas haloplanktis 214 (ATCC 19855) were preloaded with α-[14C]aminoisobutyric acid or the K+ in the cells was labeled with 42K by incubation in a buffered salt solution containing 0.05 M MgSO4, 0.01 M KCl, and 0.3 M NaCl, the cells retained their radioactivity when resuspended in the same salt solution. When NaCl was omitted from the solution, 80 to 90% of the radioactivity was lost from the cells. Cells suspended at intermediate concentrations of NaCl also lost radioactivity. New steady-state levels of the intracellular solutes were established within 15 s of suspending the cells; the percentage of radioactivity retained at each level decreased proportionately as the osmolality of the NaCl in the suspending solution decreased. With minor variations in effectiveness, MgCl2, LiCl, and sucrose could substitute for NaCl on an equiosmolal basis for the retention of radioactivity by the cells. KCl, RbCl, and CsCl were appreciably less effective as replacements for NaCl, particularly when their osmolalities in the suspending solutions were low. The amount of α-[14C]aminoisobutyric acid taken up by the cells at the steady-state level increased to a maximum as the NaCl concentration in the suspending medium increased to 0.3 M. At suboptimal levels of NaCl, either LiCl or sucrose could substitute for NaCl in increasing the steady-state levels. The results obtained indicate that the porosity of the cytoplasmic membrane of this organism is determined by the difference between the osmotic pressure of the cytoplasm and the suspending medium. The lesser effectiveness of K+, Rb+, and Cs+ than Na+, Li, or Mg2+ in permitting the retention of solutes by the cells is attributed to the greater penetrability of the hydrated ions of the former group through the dilated pores of a stretched cytoplasmic membrane.  相似文献   

5.
Osmotic adjustment of cultured tobacco (Nicotiana tabacum L. var Wisconsin 38) cells was stimulated by 10 micromolar (±) abscisic acid (ABA) during adaptation to water deficit imposed by various solutes including NaCl, KCl, K2SO4, Na2SO4, sucrose, mannitol, or glucose. The maximum difference in cell osmotic potential (Ψπ) caused by ABA treatment during adaptation to 171 millimolar NaCl was about 6 to 7 bar. The cell Ψπ differences elicited by ABA were not due to growth inhibition since ABA stimulated growth of cells in the presence of 171 millimolar NaCl. ABA caused a cell Ψπ difference of about 1 to 2 bar in medium without added NaCl. Intracellular concentrations of Na+, K+, Cl, free amino acids, or organic acids could not account for the Ψπ differences induced by ABA in NaCl treated cells. However, since growth of NaCl treated cells is more rapid in the presence of ABA than in its absence, greater accumulation of Na+, K+, and Cl was necessary for ion pool maintenance. Higher intracellular sucrose and reducing sugar concentrations could account for the majority of the greater osmotic adjustment of ABA treated cells. More rapid accumulation of proline associated with ABA treatment was highly correlated with the effects of ABA on cell Ψπ. These and other data indicate that the role of ABA in accelerating salt adaptation is not mediated by simply stimulating osmotic adjustment.  相似文献   

6.
The accumulation of inorganic and organic osmolytes and their role in osmotic adjustment were investigated in roots and leaves of vetiver grass (Vetiveria zizanioides) seedlings stressed with 100, 200, and 300 mM NaCl for 9 days. The results showed that, although the contents of inorganic (K+, Na+, Ca2+, Mg2+, Cl, NO3, SO42− and H2PO3)) and organic (soluble sugar, organic acids, and free amino acids) osmolytes all increased with NaCl concentration, the contribution of inorganic ions (mainly Na+, K+, and Cl) to osmotic adjustment was higher (71.50–80.56% of total) than that of organic solutes (19.43–28.50%). The contribution of inorganic ions increased and that of organic solutes decreased in roots with the enhanced NaCl concentration, whereas the case in leaves was opposite. On the other hand, the osmotic adjustment was only effective for vetiver grass seedlings under moderate saline stress (less than 200 mM NaCl).  相似文献   

7.
The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase. A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.  相似文献   

8.
In the presence of an iso-osmotic concentration (0.4 M) of LiCl, the exit of cellular K+ and concomitant entry of Li+ in the marine bacterium, Vibrio alginolyticus, were enhanced by an increase in the medium pH, with an optimum at about pH 9.6. In addition to alkaline pH, the K+ exit in the NaCl medium required the presence of a weak base such as diethanolamine, ethanolamine or methylamine, which is permeable to the membrane in its unprotonated form. No net entry of Na+ was detected in this case and the amine accumulated in exchange for K+. The K+ exit observed at alkaline pH could be explained by the function of a K+/H+ antiporter. Once the cells were loaded with the amine, their exposure to the NaCl medium in the absence of loaded amine induced the entry of Na+. In RbCl or CsCl medium, fast entry of Rb+ or Cs+ and exit of K+ were observed at neutral pH (7.5), and the rate of K+ exit increased with the medium pH. From these results, we established a simple method for the replcement of cellular cations with a desired cation (Li+, Na+, K+, Rb+ or Cs+). The present method was found to be applicable also to Escherichia coli.  相似文献   

9.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

10.
The lethal damage induced by the exposure of synchronized Chinese hamster cells to various concentrations of 5-fluoro-2′deoxyuridine (FUdR) was not selectively restricted to cells exposed during the period of DNA synthesis S. The colony survival fraction observed after treatment for one hour with 5 × 10?5 M FUdR was very low (0.0001–0.0003) whether the drug was administered during early G1, late G1, early S or in middle S. The survival of cells treated with the same concentration of FUdR during mitosis, however, was significantly higher (0.62) showing that mitotic cells were less sensitive to FUdR. Administration of 10?7M thymidine or “conditioned” medium for one hour reversed the lethal effect of FUdR or improved the survival, depending on the time after removal of the FUdR at which these substances were given.  相似文献   

11.
Addition of 1 mm dibutyryl cyclic AMP (Bt2cAMP) to cultures of mouse hepatoma cells, Hepa, specifically stimulates the synthesis of serum proteins including albumin. This stimulation is accompanied by an inhibition of cell proliferation. We have investigated these phenomena in synchronous cultures of Hepa. Proliferation of Hepa was arrested by isoleucine starvation. Synchronous growth was initiated by addition of complete growth medium or complete growth medium supplemented with 1 mm Bt2cAMP. S phase and mitosis were estimated by determinations of [3H]thymidine incorporation and by cell numbers. The rate of albumin synthesis relative to total protein synthesis was measured by pulse labeling cultures for 30 min with [3H]leucine and comparing amounts of immunoprecipitable label with trichloroacetic acid-precipitable label. Treatment of synchronous cultures with Bt2cAMP did not alter the duration of S phase or the onset of mitosis. The relative rate of albumin synthesis in Bt2cAMP-treated culture began increasing after mitosis. The timing of the Bt2cAMP stimulation of albumin synthesis was further investigated by adding Bt2cAMP to cultures of Hepa at various times after the initiation of synchronous growth. The relative rate of albumin synthesis was then measured at a fixed postmitotic time. An increased relative rate of albumin synthesis was observed only in cultures exposed to Bt2cAMP before or during S phase. Thus the postmitotic increase in the synthesis of albumin requires the presence of Bt2cAMP during S phase.  相似文献   

12.
Rhizobium meliloti, like many other bacteria, accumulates high levels of glutamic acid when osmotically stressed. The effect was found to be proportional to the osmolarity of the growth medium. NaCl, KCI, sucrose, and polyethylene glycol elicited this response. The intracellular levels of glutamate and K+ began to increase immediately when cells were shifted to high-osmolarity medium. Antibiotics that inhibit protein synthesis did not affect this increase in glutamate production. Cells growing in conventional media at any stage in the growth cycle could be suspended in medium causing osmotic stress and excess glutamate accumulated. The excess glutamate did not appear to be excreted, and the intracellular level eventually returned to normal when osmotically stressed cells were suspended in low-osmolarity medium. A glt mutant lacking glutamate synthase and auxotrophic for glutamate accumulated excess glutamate in response to osmotic stress. Addition of isoleucine, glutamine, proline, or arginine stimulated glutamate accumulation to wild-type levels when the mutant cells were suspended in minimal medium with NaCl to cause osmotic stress. In both wild-type and mutant cells, inhibitors of transaminase activity, including azaserine and aminooxyacetate, reduced glutamate levels. The results suggest that the excess glutamate made in response to osmotic stress is derived from degradation of amino acids and transamination of 2-ketoglutarate.  相似文献   

13.
The mechanisms by which a novel eubacterium, identified as belonging to the genus Halomonas, adapted to increases in the extracellular osmotic potential were investigated. It was shown that the ability of the bacterium to grow after hyperosmotic shock was dependent on the presence of potassium ions. Growth of the bacterium in 2 M NaCl medium could be limited by low concentrations of K+ and this enabled the affinity for K+ to be determined (K s=21.5 M). Rubidium salts could be substituted for those of potassium, but the lowest concentration of Rb+ that allowed growth in 2 M NaCl medium was 50-fold greater than the minimum concentration of K+. 13C-NMR spectroscopy and HPLC analysis were used to demonstrate the accumulation of organic solutes in the cytoplasm after exposure to high salinities. The major osmolyte was ectoine, but glutamate and ectoine hydroxide were also present. Addition of exogenous glycine betaine to 3.25 M NaCl medium resulted in the accumulation of high intracellular concentrations of glycine betaine in the bacterium. This reduced the level of ectoine accumulation but did not fully inhibit the synthesis of this compound in the cytoplasm.Abbreviation Specific growth rate (generations/h)  相似文献   

14.
Cell growth and differentiation in melanocyte cell populations are regulated by a wide range of bioactive substances. Recently, the tripeptide pyroGlu-Phe-GlyNH2which inhibits melanocyte growthin vitrowas identified in both murine nontransformed melanocytes and malignant melanoma cells. The present study was undertaken to investigate the cell cycle specificity as well as the growth inhibitory profile of the tripeptide after a single or repeated administration to melanocyte cultures. Dose-related effects of the peptide were studied using three different bioassay systems: estimation of cell number, DNA synthesis, and cell flux into mitosis. Growth of melanocyte cultures as well as melanocyte mitotic activity were found to be reduced significantly by the tripeptide at two separate dose levels (10−11and 10−14–10−15M). Growth inhibition of melanocyte population did not last long: less than 36 h after the first and less than 24 h after the second peptide addition to the cultures. The level of DNA synthesis in melanocytes remained unchanged after a single peptide administration. The findings indicate that the tripeptide pyroGlu-Phe-GlyNH2causes transitory delay of cell growth in cultured melanocyte population resulting from a reversible inhibition of melanocyte transition from the G2-phase of the cell cycle into mitosis.  相似文献   

15.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

16.
Atriplex prostrata was grown for one month in nutrient solutions with NaCl, KCl, Na2SO4, and K2SO4 (at osmotic potentials of 0, –0.75, –1.00, and –1.50 MPa). Plants treated with K2SO4 had less glycinebetaine at –1.0 and –1.50 MPa than those treated with Na+ salts, probably due to the inhibitory effects of K+ on glycinebetaine accumulation.  相似文献   

17.
To gain a better understanding of the relations between root elongation and the amount of Ca2+ bound to the plasma membrane (PM), melon plants were grown in aerated solutions containing different concentrations of CaCl2 with various concentrations of NaCl or mannitol. With increasing external concentrations of NaCl or mannitol, root elongation was suppressed. Addition of CaCl2 to the external medium alleviated the inhibition of root elongation by high concentrations of Na+, but not of mannitol. Root elongation in media containing high concentrations of NaCl was correlated with the computed amount of Ca2+ bound to the PM. A model describing relative root elongation (RRL) under salt stress was developed. This model takes into account the osmotic potential in the growing solution (based on the mannitol experiments) and the computed amount of Ca2+ bound to the PM. Calcium binding was calculated by applying a Gouy-Chapman-Stern sorption model using the same parameters deduced from studies on PM vesicles. This model combines electrostatic theory with competitive binding at the PM surface. The model for RRL allowed the computation of a critical value for the fraction of negative sites binding Ca2+ on the PM needed for nearly optimal (95%) root elongation. Any decrease below this critical value decreased the RRL. Root elongation of Honey Dew (salt-resistant cv.) was greater than that of Eshkolit Ha'Amaqim (salt-sensitive cv.) under NaCl stress. Nearly optimal root growth for Honey Dew and Eshkolit Ha'Amaqim occurred when 40% and 51% of total membrane charged sites were bound by Ca2+, respectively. The effect of osmotic potential on the suppression of root elongation was the same for the two cultivars. To our knowledge, this report provides the first fully quantitative estimates of PM-bound Ca2+ relative to salt toxicity.  相似文献   

18.
Growth characteristics ofDeleya halophila (CCM 3662T), were determined using a defined medium.Deleya halophila presented its optimal growth at 7.5% (wt/vol) total salts when it was grwon at incubation temperatures of 32° and 42°C; when the temperature was lowered to 22°C, it had optimal growth at 5% (wt/vol) total salts. This bacterium had an absolute requirement for the Na+ cation; it could not be replaced by other cations. NaBr, Na2SO4, or Na2S2O3 could be substituted for NaCl in the growth medium, but, when MgCl2, KCl, LiCl, NaI, NaF, or NaNO3 was substituted for NaCl, the medium did not support growth. Growth rates of the strain were diverse when NaCl was partially replaced by other sodium salts. Finally,D. halophila suffered loss of viability when the culture was diluted into different low NaCl concentrations (0, 0.5%, and 1%, wt/vol) at various incubation temperatures.  相似文献   

19.
The fate of cells arrested by Vincristine (VCR) in metaphase is of interest because of the wide use of this substance in cancer chemotherapy and, particularly, in relation to its use in so-called ‘synchronization’ therapy. The present study was designed to answer the question of whether cells blocked in metaphase by VCR subsequently proliferate further or whether they become infertile and die. By means of a double labelling technique with [3H] and [14C]thymidine (TdR) it was shown that all VCR-arrested metaphases in the JB-1 ascites tumour subsequently became necrotic. These cells did not re-enter a viable G2 phase following arrest and thus could not take part in a wave of synchronous proliferation. In agreement with earlier studies, VCR was found to lead to arrest in metaphase, not only of cells in or shortly prior to mitosis at the time of VCR administration, but also of the majority of cells which had at this time been in the S and G2 phase.  相似文献   

20.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号