首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) is a major human pathogen that causes serious liver disease, including cirrhosis and hepatocellular carcinoma. The primary target cells of HCV are hepatocytes, and entry is restricted by interactions of the envelope glycoproteins, E1 and E2, with cellular receptors. E1 and E2 form noncovalently linked heterodimers and are heavily glycosylated. Glycans contribute to protein folding and transport as well as protein function. In addition, glycans associated with viral envelopes mask important functional domains from the immune system and attenuate viral immunogenicity. Here, we explored the role of N- and O-linked glycans on E2, which is the receptor binding subunit of the HCV envelope. We identified a number of glycans that are critical for viral entry. Importantly, we showed that the removal of several glycans significantly increased the inhibition of entry by sera from HCV-positive individuals. Only some of the glycans that affected entry and neutralization were also important for CD81 binding. Our results show that HCV envelope-associated glycans play a crucial role in masking functionally important regions of E2 and suggest a new strategy for eliciting highly neutralizing antibodies against this virus.  相似文献   

2.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

3.
Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.  相似文献   

4.
Interaction between the hepatitis C virus (HCV) envelope protein E2 and the host receptor CD81 is essential for HCV entry into target cells. The number of E2-CD81 complexes necessary for HCV entry has remained difficult to estimate experimentally. Using the recently developed cell culture systems that allow persistent HCV infection in vitro, the dependence of HCV entry and kinetics on CD81 expression has been measured. We reasoned that analysis of the latter experiments using a mathematical model of viral kinetics may yield estimates of the number of E2-CD81 complexes necessary for HCV entry. Here, we constructed a mathematical model of HCV viral kinetics in vitro, in which we accounted explicitly for the dependence of HCV entry on CD81 expression. Model predictions of viral kinetics are in quantitative agreement with experimental observations. Specifically, our model predicts triphasic viral kinetics in vitro, where the first phase is characterized by cell proliferation, the second by the infection of susceptible cells and the third by the growth of cells refractory to infection. By fitting model predictions to the above data, we were able to estimate the threshold number of E2-CD81 complexes necessary for HCV entry into human hepatoma-derived cells. We found that depending on the E2-CD81 binding affinity, between 1 and 13 E2-CD81 complexes are necessary for HCV entry. With this estimate, our model captured data from independent experiments that employed different HCV clones and cells with distinct CD81 expression levels, indicating that the estimate is robust. Our study thus quantifies the molecular requirements of HCV entry and suggests guidelines for intervention strategies that target the E2-CD81 interaction. Further, our model presents a framework for quantitative analyses of cell culture studies now extensively employed to investigate HCV infection.  相似文献   

5.
Hepatitis C virus (HCV) or HCV-low-density lipoprotein (LDL) complexes interact with the LDL receptor (LDLr) and the HCV envelope glycoprotein E2 interacts with CD81 in vitro. However, E2 interactions with LDLr and HCV interactions with CD81 have not been clearly described. Using sucrose gradient-purified low-density particles (1.03 to 1.07 g/cm(3)), intermediate-density particles (1. 12 to 1.18 g/cm(3)), recombinant E2 protein, or control proteins, we assessed binding to MOLT-4 cells, foreskin fibroblasts, or LDLr-deficient foreskin fibroblasts at 4 degrees C by flow cytometry and confocal microscopy. Viral entry was determined by measuring the coentry of alpha-sarcin, a protein synthesis inhibitor. We found that low-density HCV particles, but not intermediate-density HCV or controls bound to MOLT-4 cells and fibroblasts expressing the LDLr. Binding correlated with the extent of cellular LDLr expression and was inhibited by LDL but not by soluble CD81. In contrast, E2 binding was independent of LDLr expression and was inhibited by human soluble CD81 but not mouse soluble CD81 or LDL. Based on confocal microscopy, we found that low-density HCV particles and LDL colocalized on the cell surface. The addition of low-density HCV but not intermediate-density HCV particles to MOLT-4 cells allowed coentry of alpha-sarcin, indicating viral entry. The amount of viral entry also correlated with LDLr expression and was independent of the CD81 expression. Using a solid-phase immunoassay, recombinant E2 protein did not interact with LDL. Our data indicate that E2 binds CD81; however, virus particles utilize LDLr for binding and entry. The specific mechanism by which HCV particles interact with LDL or the LDLr remains unclear.  相似文献   

6.
The envelope glycoprotein E2 of hepatitis C virus (HCV) is the target of neutralizing antibodies and is presently being evaluated as an HCV vaccine candidate. HCV binds to human cells through the interaction of E2 with the tetraspanin CD81, a putative viral receptor component. We have analyzed four different E2 proteins from 1a and 1b viral isolates for their ability to bind to recombinant CD81 in vitro and to the native receptor displayed on the surface of Molt-4 cells. A substantial difference in binding efficiency between these E2 variants was observed, with proteins derived from 1b subtypes showing significantly lower binding than the 1a protein. To elucidate the mechanism of E2-CD81 interaction and to identify critical regions responsible for the different binding efficiencies of the E2 variants, several mutants were generated in E2 protein regions predicted by computer modeling to be exposed on the protein surface. Functional analysis of these E2 derivatives revealed that at least two distinct domains are responsible for interaction with CD81. A first segment centered around amino acid residues 613 to 618 is essential for recognition, while a second element including the two hypervariable regions (HVRs) modulates E2 receptor binding. Binding inhibition experiments with anti-HVR monoclonal antibodies confirmed this mapping and supported the hypothesis that a complex interplay between the two HVRs of E2 is responsible for modulating receptor binding, possibly through intramolecular interactions. Finally, E2 proteins from different isolates displayed a profile of binding to human hepatic cells different from that observed on Molt-4 cells or isolated recombinant CD81, indicating that additional factors are involved in viral recognition by target liver cells.  相似文献   

7.
The majority of hepatitis C virus (HCV)-infected individuals progress from acute to chronic disease, despite the presence of a strong humoral immune response to the envelope glycoproteins E1 and E2. When expressed in mammalian cells, E1 and E2 form both noncovalently linked E1E2 heterodimers, believed to be properly folded, and disulfide-linked, high-molecular-weight aggregates that are misfolded. Previously, we identified 10 human monoclonal antibodies (HMAbs) that bind E2 glycoproteins from different genotypes. Here we demonstrate that one of these HMAbs, CBH-2, is unique in its ability to distinguish between properly folded and misfolded envelope proteins. This HMAb recognizes HCV-E2 only when complexed with E1. The E1E2 complexes recognized by CBH-2 are noncovalently linked heterodimers and not misfolded disulfide-linked, high-molecular-weight aggregates. The E1E2 heterodimers seen by CBH-2 no longer associate with the endoplasmic reticulum chaperone calnexin and are likely to represent the prebudding form of the HCV virion.  相似文献   

8.
We discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81. Comparative binding studies using recombinant E2 from the most prevalent 1a and 1b genotypes revealed that E2 recognition by hepatoma cells is independent from the viral isolate, while E2-CD81 interaction is isolate specific. Binding of soluble E2 to human hepatoma cells was impaired by deletion of the hypervariable region 1 (HVR1), but the wild-type phenotype was recovered by introducing a compensatory mutation reported previously to rescue infectivity of an HVR1-deleted HCV infectious clone. We have identified the receptor responsible for E2 binding to human hepatic cells as the human scavenger receptor class B type I (SR-BI). E2-SR-BI interaction is very selective since neither mouse SR-BI nor the closely related human scavenger receptor CD36, were able to bind E2. Finally, E2 recognition by SR-BI was competed out in an isolate-specific manner both on the hepatoma cell line and on the human SR-BI-transfected cell line by an anti-HVR1 monoclonal antibody.  相似文献   

9.
Hepatitis C virus (HCV) is the leading causative agent of blood-borne chronic hepatitis and is the target of intensive vaccine research. The virus genome encodes a number of structural and nonstructural antigens which could be used in a subunit vaccine. The HCV envelope glycoprotein E2 has recently been shown to bind CD81 on human cells and therefore is a prime candidate for inclusion in any such vaccine. The experiments presented here assessed the optimal form of HCV E2 antigen from the perspective of antibody generation. The quality of recombinant E2 protein was evaluated by both the capacity to bind its putative receptor CD81 on human cells and the ability to elicit antibodies that inhibited this binding (NOB antibodies). We show that truncated E2 proteins expressed in mammalian cells bind with high efficiency to human cells and elicit NOB antibodies in guinea pigs only when purified from the core-glycosylated intracellular fraction, whereas the complex-glycosylated secreted fraction does not bind and elicits no NOB antibodies. We also show that carbohydrate moieties are not necessary for E2 binding to human cells and that only the monomeric nonaggregated fraction can bind to CD81. Moreover, comparing recombinant intracellular E2 protein to several E2-encoding DNA vaccines in mice, we found that protein immunization is superior to DNA in both the quantity and quality of the antibody response elicited. Together, our data suggest that to elicit antibodies aimed at blocking HCV binding to CD81 on human cells, the antigen of choice is a mammalian cell-expressed, monomeric E2 protein purified from the intracellular fraction.  相似文献   

10.
A model for the hepatitis C virus envelope glycoprotein E2   总被引:16,自引:0,他引:16  
Several experimental studies on hepatitis C virus (HCV) have suggested the envelope glycoprotein E2 as a key antigen for an effective vaccine against the virus. Knowledge of its structure, therefore, would present a significant step forward in the fight against this disease. This paper reports the application of fold recognition methods in order to produce a model of the HCV E2 protein. Such investigation highlighted the envelope protein E of Tick Borne Encephalitis virus as a possible template for building a model of HCV E2. Mapping of experimental data onto the model allowed the prediction of a composite interaction site between E2 and its proposed cellular receptor CD81, as well as a heparin binding domain. In addition, experimental evidence is provided to show that CD81 recognition by E2 is isolate or strain specific and possibly mediated by the second hypervariable region (HVR2) of E2. Finally, the studies have also allowed a rough model for the quaternary structure of the envelope glycoproteins E1 and E2 complex to be proposed. Proteins 2000;40:355-366.  相似文献   

11.
The intrinsic variability of hepatitis C virus (HCV) envelope proteins E1 and E2 complicates the identification of protective antibodies. In an attempt to identify antibodies to E2 proteins from divergent HCV isolates, we produced HCV E2 recombinant proteins from individuals infected with HCV genotypes 1a, 1b, 2a, and 2b. These proteins were then used to characterize 10 human monoclonal antibodies (HMAbs) produced from peripheral B cells isolated from an individual infected with HCV genotype 1b. Nine of the antibodies recognize conformational epitopes within HCV E2. Six HMAbs identify epitopes shared among HCV genotypes 1a, 1b, 2a, and 2b. Six, including five broadly reactive HMAbs, could inhibit binding of HCV E2 of genotypes 1a, 1b, 2a, and 2b to human CD81 when E2 and the antibody were simultaneously exposed to CD81. Surprisingly, all of the antibodies that inhibited the binding of E2 to CD81 retained the ability to recognize preformed CD81-E2 complexes generated with some of the same recombinant E2 proteins. Two antibodies that did not recognize preformed complexes of HCV 1a E2 and CD81 also inhibited binding of HCV 1a virions to CD81. Thus, HCV-infected individuals can produce antibodies that recognize conserved conformational epitopes and inhibit the binding of HCV to CD81. The inhibition is mediated via antibody binding to epitopes outside of the CD81 binding site in E2, possibly by preventing conformational changes in E2 that are required for CD81 binding.  相似文献   

12.
Hepatitis C virus (HCV) is one of the leading causes of chronic liver diseases and B-lymphocyte proliferative disorders, including mixed cryoglobulinemia and B-cell lymphoma. It has been suggested that HCV infects human cells through the interaction of its envelope glycoprotein E2 with a tetraspanin molecule CD81, the putative viral receptor. Here, we show that the engagement of B cells by purified E2 induced double-strand DNA breaks specifically in the variable region of immunoglobulin (V(H)) gene locus, leading to hypermutation in the V(H) genes of B cells. Other gene loci were not affected. Preincubation with the anti-CD81 monoclonal antibody blocked this effect. E2-CD81 interaction on B cells triggered the enhanced expression of activation-induced cytidine deaminase (AID) and also stimulated the production of tumor necrosis factor alpha. Knockdown of AID by the specific small interfering RNA blocked the E2-induced double-strand DNA breaks and hypermutation of the V(H) gene. These findings suggest that HCV infection, through E2-CD81 interaction, may modulate host's innate or adaptive immune response by activation of AID and hypermutation of immunoglobulin gene in B cells, leading to HCV-associated B-cell lymphoproliferative diseases.  相似文献   

13.
The E2 protein of hepatitis C virus (HCV) is believed to be a virion surface glycoprotein that is a candidate for inclusion in an antiviral vaccine. A truncated soluble version of E2 has recently been shown to interact with CD81, suggesting that this protein may be a component of the receptor for HCV. When expressed in eukaryotic cells, a significant proportion of E2 forms misfolded aggregates. To analyze the specificity of interaction between E2 and CD81, the aggregated and monomeric forms of a truncated E2 glycoprotein (E2(661)) were separated by high-pressure liquid chromatography and analyzed for CD81 binding. Nonaggregated forms of E2 preferentially bound CD81 and a number of conformation-dependent monoclonal antibodies (MAbs). Furthermore, intracellular forms of E2(661) were found to bind CD81 with greater affinity than the extracellular forms. Intracellular and secreted forms of E2(661) were also found to differ in reactivity with MAbs and human sera, consistent with differences in antigenicity. Together, these data indicate that proper folding of E2 is important for its interaction with CD81 and that modifications of glycans can modulate this interaction. Identification of the biologically active forms of E2 will assist in the future design of vaccines to protect against HCV infection.  相似文献   

14.
Chen Z  Zhu Y  Ren Y  Tong Y  Hua X  Zhu F  Huang L  Liu Y  Luo Y  Lu W  Zhao P  Qi Z 《PloS one》2011,6(4):e18933
HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production.  相似文献   

15.
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.  相似文献   

16.
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.  相似文献   

17.
The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a core-NS2, we exchanged E2 with functional isolate sequences of genotypes 1a (alternative isolate), 1b, and 2a. While the 1a-E2 exchange did not impact virus viability, the 2a-E2 recombinant was nonviable. After E2 exchange from three 1b isolates, long delays were observed before spread of infection. For recovered 1b-E2 recombinants, single E2 stem region amino acid changes were identified at residues 706, 707, and 710. In reverse genetic studies, these mutations increased infectivity titers by ∼100-fold, apparently without influencing particle stability or cell binding although introducing slight decrease in particle density. In addition, the 1b-E2 exchange led to a decrease in secreted core protein of 25 to 50%, which was further reduced by the E2 stem region mutations. These findings indicated that compensatory mutations permitted robust infectious virus production, without increasing assembly/release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition assay indicated that the mutations influenced a late step of the HCV entry pathway. Overall, this study identified specific amino acids in the E2 stem region of importance for HCV entry and for production of infectious virus particles.  相似文献   

18.
Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.  相似文献   

19.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   

20.
Human antibodies elicited in response to hepatitis C virus (HCV) infection are anticipated to react with the native conformation of the viral envelope structure. Isolation of these antibodies as human monoclonal antibodies that block virus binding and entry will be useful in providing potential therapeutic reagents and for vaccine development. H-111, an antibody to HCV envelope 1 protein (E1) that maps to the YEVRNVSGVYH sequence and is located near the N terminus of E1 and is able to immunoprecipitate E1E2 heterodimers, is described. Binding of H-111 to HCV E1 genotypes 1a, 1b, 2b, and 3a indicates that the H-111 epitope is highly conserved. Sequence analysis of antibody V regions showed evidence of somatic and affinity maturation of H-111. Finally, H-111 blocks HCV-like particle binding to and HCV virion infection of target cells, suggesting the involvement of this epitope in virus binding and entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号