首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The generation of biologically active proteins by regulated intramembrane proteolysis is a highly conserved mechanism in cell signaling. Presenilin-dependent gamma-secretase activity is responsible for the intramembrane proteolysis of selected type I membrane proteins, including beta-amyloid precursor protein (APP) and Notch. A small fraction of intracellular domains derived from both APP and Notch translocates to and appears to function in the nucleus, suggesting a generic role for gamma-secretase cleavage in nuclear signaling. Here we show that the p75 neurotrophin receptor (p75NTR) undergoes presenilin-dependent intramembrane proteolysis to yield the soluble p75-intracellular domain. The p75NTR is a multifunctional type I membrane protein that promotes neurotrophin-induced neuronal survival and differentiation by forming a heteromeric co-receptor complex with the Trk receptors. Mass spectrometric analysis revealed that gamma-secretase-mediated cleavage of p75NTR occurs at a position located in the middle of the transmembrane (TM) domain, which is reminiscent of the amyloid beta-peptide 40 (Abeta40) cleavage of APP and is topologically distinct from the major TM cleavage site of Notch 1. Size exclusion chromatography and co-immunoprecipitation analyses revealed that TrkA forms a molecular complex together with either full-length p75 or membrane-tethered C-terminal fragments. The p75-ICD was not recruited into the TrkA-containing high molecular weight complex, indicating that gamma-secretase-mediated removal of the p75 TM domain may perturb the interaction with TrkA. Independent of the possible nuclear function, our studies suggest that gamma-secretase-mediated p75NTR proteolysis plays a role in the formation/disassembly of the p75-TrkA receptor complex by regulating the availability of the p75 TM domain that is required for this interaction.  相似文献   

14.
15.
16.
Fibroblast growth factor receptor 3 (FGFR3) is a major negative regulator of bone growth that inhibits the proliferation and differentiation of growth plate chondrocytes. Activating mutations of its c isoform cause dwarfism in humans; somatic mutations can drive oncogenic transformation in multiple myeloma and bladder cancer. How these distinct activities arise is not clear. FGFR3 was previously shown to undergo proteolytic cleavage in the bovine rib growth plate, but this was not explored further. Here, we show that FGF1 induces regulated intramembrane proteolysis (RIP) of FGFR3. The ectodomain is proteolytically cleaved (S1) in response to ligand-induced receptor activation, but unlike most RIP target proteins, it requires endocytosis and does not involve a metalloproteinase. S1 cleavage generates a C-terminal domain fragment that initially remains anchored in the membrane, is phosphorylated, and is spatially distinct from the intact receptor. Ectodomain cleavage is followed by intramembrane cleavage (S2) to generate a soluble intracellular domain that is released into the cytosol and can translocate to the nucleus. We identify the S1 cleavage site and show that γ-secretase mediates the S2 cleavage event. In this way we demonstrate a mechanism for the nuclear localization of FGFR3 in response to ligand activation, which may occur in both development and disease.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号