首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To explore the possible role of proteolytic step(s) in receptor-mediated endocytosis of insulin, the effects of inhibitors of various classes of proteases on the internalization process were studied in isolated rat adipocytes. Intracellular accumulation of receptor-bound 125I-insulin at 37 degrees C was quantitated after rapidly dissociating surface-bound insulin with an acidic buffer (pH 3.0). Of the 23 protease inhibitors tested, only chymotrypsin substrate analogues inhibited insulin internalization. Internalization was decreased 62-90% by five different chymotrypsin substrate analogues: N-acetyl-Tyr ethyl ester, N-acetyl-Phe ethyl ester, N-acetyl-Trp ethyl ester, benzoyl-Tyr ethyl ester, and benzoyl-Tyr amide. The effect of the substrate analogues in inhibiting insulin internalization was dose-dependent, reversible, and required the full structural complement of a chymotrypsin substrate analogue. Cell surface receptor number was unaltered at 12 degrees C. However, concomitant with their inhibition of insulin internalization at 37 degrees C, the chymotrypsin substrate analogues caused a marked increase (160-380%) in surface-bound insulin, indicating trapping of insulin-receptor complexes on the cell surface. Additionally, 1 mM N-acetyl-Tyr ethyl ester decreased overall insulin degradation by 15-20% and also prevented the chloroquine-mediated increase in intracellular insulin, further indicating that surface-bound insulin was prevented from reaching intracellular chloroquine-sensitive degradation sites. The internalization of insulin receptors that were photoaffinity labeled on the cell surface with B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin was also inhibited 70-90% by the five chymotrypsin substrate analogues, as determined by the effects of the analogues on the accumulation of trypsin-insensitive (intracellular) 440-kD intact labeled receptors. In summary, these results show that chymotrypsin substrate analogues efficiently inhibit the internalization of insulin and insulin receptors in adipocytes and implicate a possible role for endogenous chymotrypsin-like enzyme(s) or related substances in receptor-mediated endocytosis of insulin.  相似文献   

3.
The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.  相似文献   

4.
Structural modification of insulin results in the generation of insulin analogues that show altered binding affinities to the insulin receptor and/or IGF-I receptor. As a consequence these insulin analogues may have increased mitogenic potency. Nine benign or malignant human mammary epithelial cells, which show different insulin receptor and IGF-I receptor expression patterns, were studied regarding mitogenicity of insulin and insulin analogues. Only insulin glargine showed a significantly higher proliferative effect on MCF-7 breast cancer cells compared to regular insulin among a panel of short- or long-acting insulin analogues, that are in clinical use.  相似文献   

5.
6.
7.
8.
9.
A. Mü  hlrad  F. F  bi  n 《BBA》1970,216(2):422-427
The effects of ATP, ATP analogues, Mg2+ and actin on the trinitrophenylation of myosin and on the enzymic properties of trinitrophenylated samples were studied.

1. 1. Trinitrophenylation of myosin was inhibited by the presence of ATP and its analogues during the treatment in the order ADP > ATP > pyrophosphate > AMP.

2. 2. The alteration of the enzymic properties due to trinitrophenylation of myosin was prevented by the presence of ATP or ADP and somewhat less by that of pyrophosphate and AMP during trinitrophenylation, but only if Mg2+ was also present.

3. 3. Neither the degree of trinitrophenylation nor the enzymic properties of the trinitrophenylated myosin were influenced by the presence of actin during the treatment of myosin.

Abbreviations: TBS; 2; 4; 6-trinitrobenzene sulphonate  相似文献   


10.
11.
We and others recently generated mice with a targeted disruption of the insulin receptor substrate 1 (IRS-1) gene and demonstrated that they exhibited growth retardation and had resistance to the glucose-lowering effect of insulin. Insulin initiates its biological effects by activating at least two major signalling pathways, one involving phosphatidylinositol 3-kinase (PI3-kinase) and the other involving a ras/mitogen-activated protein kinase (MAP kinase) cascade. In this study, we investigated the roles of IRS-1 and IRS-2 in the biological action in the physiological target organs of insulin by comparing the effects of insulin in wild-type and IRS-1-deficient mice. In muscles from IRS-1-deficient mice, the responses to insulin-induced PI3-kinase activation, glucose transport, p70 S6 kinase and MAP kinase activation, mRNA translation, and protein synthesis were significantly impaired compared with those in wild-type mice. Insulin-induced protein synthesis was both wortmannin sensitive and insensitive in wild-type and IRS-1 deficient mice. However, in another target organ, the liver, the responses to insulin-induced PI3-kinase and MAP kinase activation were not significantly reduced. The amount of tyrosine-phosphorylated IRS-2 (in IRS-1-deficient mice) was roughly equal to that of IRS-1 (in wild-type mice) in the liver, whereas it only 20 to 30% of that of IRS-1 in the muscles. In conclusion, (i) IRS-1 plays central roles in two major biological actions of insulin in muscles, glucose transport and protein synthesis; (ii) the insulin resistance of IRS-1-deficient mice is mainly due to resistance in the muscles; and (iii) the degree of compensation for IRS-1 deficiency appears to be correlated with the amount of tyrosine-phosphorylated IRS-2 (in IRS-1-deficient mice) relative to that of IRS-1 (in wild-type mice).  相似文献   

12.
Analogues of catechol (protocatechuic acid and ethyl protocatechuate) as well as catechol itself, combine with the enzyme-bound iron of pyrocatechase and formed complexes with the enzyme. The complexes and the native enzyme showed ESR signals characteristic of a ferric iron complex at g=4.3, but the patterns of the signals were different from that of the native enzyme. After forming the complex, ethyl protocatechuate readily released the bound iron of the enzyme protein to give the apoenzyme. The addition of catechol to the enzyme in the absence of oxygen resulted in a decrease of the ESR signal at g=4.3, but which did not disappear. These results indicate that the bound iron of pyrocatechase in the ES complex is similar to ferric iron in a charge transfer complex.  相似文献   

13.
14.
Identification of protease substrates and detailed characterization of processed sites are essential for understanding the biological function of proteases. Because of inherent complexity reasons, this however remains a formidable analytical challenge, illustrated by the fact that the majority of the more than 500 human proteases are uncharacterized to date. Recently, in addition to conventional genetic and biochemical approaches, diverse quantitative peptide-centric proteomics approaches, some of which selectively recover N-terminal peptides, have emerged. These latter proteomic technologies in particular allow the identification of natural protease substrates and delineation of cleavage sites in a complex, natural background of thousands of different proteins. We here review current biochemical, genetic and proteomic methods for global analysis of substrates of proteases and discuss selected applications.  相似文献   

15.

Background

The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues.

Methodology/Principal Findings

Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity.

Conclusions/Significance

We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.  相似文献   

16.
17.
A.E. Farah  A.A. Alousi 《Life sciences》1981,29(10):975-1000
This review summarizes the effects of insulin on cardiac contractility of the normal, failing, anoxic and ischemic heart. In animal experiments under aerobic conditions a variety of effects of insulin on cardiac contractile force have been described which are frequently contradictory. The use of different insulin preparations of unknown purity make the interpretation of these findings rather difficult. The protective effects of insulin in the isolated heart on the rate of production of spontaneous heart failure require both glucose and insulin for maximal effect and are probably related to an improved cardiac carbohydrate utilization produced by insulin. Other cardiac effects of insulin independent of glucose could be due to ionic readjustments produced by insulin which are glucose independent.  相似文献   

18.
1-D-6-O-(2-Amino-2-deoxy-alpha-D-glucopyranosyl)-2-O-octyl-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (23) and the corresponding 2-O-hexadecyl-D-myo-inositol compound 24 have been prepared as substrate analogues of an early intermediate in the biosynthetic pathway of glycosylphosphatidylinositol (GPI) membrane anchors. 1-D-6-O-(2-Amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 1-(1,2-di-O-octyl-sn-glycerol 3-phosphate) has also been prepared as a substrate analogue. Biological evaluation of the analogues 23 and 24 revealed that they are neither substrates nor inhibitors of GPI biosynthetic enzymes in the human (HeLa) cell-free system but are potent inhibitors at different stages of GPI biosynthesis in the Trypanosoma brucei cell-free system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号