首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar R  Shukla PK 《Fungal biology》2010,114(2-3):189-197
Resistance to amphotericin B is an emerging phenomenon in Candida albicans. Amphotericin B-resistant strain of C. albicans was developed under laboratory conditions and the stability of acquired resistance was confirmed in vitro as well as in vivo. This AMB-resistant strain exhibited reduced germ tube formation as compared to parent strain of C. albicans (ATCC10231). Enzymatic activity of virulence factors like secreted aspartyl proteinase and phospholipase were found to be significantly high in AMB-R as compared to parent strain whereas ergosterol content of AMB-R was drastically reduced. The behavior of AMB-R strain is an interesting phenomenon and opens up a wide area of research regarding pathways and mechanisms.  相似文献   

2.
Candida yeasts are opportunistic pathogens responsible for infections in immunocompromised individuals. Among the virulence factors present in these yeasts we can mention the ability to adhere to host cells, exoenzyme production and germ tube formation. Several compounds, such as antifungal agents, plants extracts, protein inhibitors and surfactants, have been tested regarding their capacity in inhibit Candida spp. virulence factors. Among these compounds, a significant lower number of works are focused on the inhibition action caused by different types of surfactant. The present work aimed to evaluate the effect generated by the surfactants cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), N-hexadecyl-NN′-dimethyl-3-ammonio-1-propane-sulfonate (HPS) and octylphenoxypolyethoxyethanol (Triton X-100) on the viability, adhesion ability and exoenzyme production by Candida species. CTAC and HPS were capable to inhibit Candida spp. growth at very low concentrations. All surfactants demonstrated to be capable to inhibit the adhesion of Candida species to buccal epithelial cells (BEC) and the proteinase production. On the other hand, the phospholipase production remained unaltered after the treatment with these compounds. The present data denote that cationic and zwitterionic surfactants are interesting prototypes of inhibitory agents against Candida spp., which is probably associated with the cationic punctual charge of both surfactants. The results are discussed in details in agreement with recent reports from literature.  相似文献   

3.
The metabolism ofl-proline toN-acetyl-d-glucosamine (GlcNAc) during germ tube formation ofCandida albicans (C. albicans) ATCC 1002 was studied. In uptake experiments, 6.9 nmol ofl-[14C]proline were taken up by 1×106 cells during 3 h of incubation at 37°C. The percentage of germ tube formation was 94 under the same condition. The presence of GlcNAc reduced the uptake ofl-proline to 3.0 nmol. The percentage of germ tube formation was 95 in the presence and absence of GlcNAc. The [3H]GlcNAc uptake was 3.0 nmol and was constant whetherl-proline was present or not. After the preparation of a chitin fraction from germ tubes that were labeled withl-[14C]proline, the radioactivity froml-proline was detected in the glucosamine (GlcN) fraction by thin-layer chromatography (TLC). The metabolism ofl-proline to GlcNAc in chitin during germ tube formation was confirmed in this experiment.  相似文献   

4.
Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 μM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4‐64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA‐treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 μm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4‐64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination.  相似文献   

5.
Diabetes mellitus (DM) is a systemic condition characterized by a deficient sugar metabolism, which affects the immune system and favors the development of yeasts. The aim of the present study was to perform biochemical, morphological, exoenzyme analyses of Candida species and the molecular identification (DNA) of C. albicans in patients with type II diabetes mellitus. The exoenzyme quantification was compared to non-diabetic patients as controls. Two hundred and seventy-four patients who make use of complete dentures were evaluated, 28 of whom had diabetes and erythematous oral candidiasis. Other thirty patients presented the same clinical feature but without diabetes. Samples were isolated for biochemical identification (auxonogram), morphological identification (production of germ tubes) and PCR molecular identification (DNA). The capability of the Candida samples in producing phospholipases and proteinases was also determined. The diabetic patients had a greater diversity of Candida species (Fischer’s exact test, P = 0.04). The production of proteinases by C. albicans in patients with diabetes was greater than in the control group (unpaired “t” test P < 0.003). However, there was no difference between groups for phospholipase production (unpaired “t” test P > 0.05). It was concluded that patients with controlled DM exhibited systemic conditions predisposing C. albicans proteinase increased production.  相似文献   

6.
Bone morphogenetic protein (BMP)-4 has a crucial role on primordial germ cells (PGCs) development in vivo which can promote stem cell differentiation to PG-like cells. In this study, we investigated the expression of Mvh as one of the specific genes in primordial germ cells after treatment with different doses of BMP4 on bone mesenchymal stem cells (BMSCs)-derived PGCs. Following isolation of BMSCs from male mouse femur and tibia, cells were cultured in medium for 72 h. Passage 4 murine BMSCs were characterized by CD90, CD105, CD34, and CD45 markers and osteo-adipogenic differentiation. Different doses of BMP4 (0, 0.01, 0.1, 1, 5, 25, 50, and 100 ng/ml) were added to BMSCs for PGCs differentiation during 4-days culture. Viability percent, proliferation rates, and expression of Mvh gene were analyzed by RT-qPCR. Data analysis was done with ANOVA test. CD90+, CD105+, CD34, and CD45 BMSCs were able to differentiate to osteo-adipogenic lineages. The results revealed that proliferation rate and viability percent were raised significantly (p ≤ 0.05) by adding 1, 5, 25 ng/ml of BMP4 and there were decreased to the lowest rate after adding 100 ng/ml BMP4 (p ≤ 0.05). There were significant up regulation (p ≤ 0.05) in Mvh expression between 25, 50, and 100 ng/ml BMP4 with other doses. So the selective dose of BMP-4 for treatment during 4-day culture was 25 ng/ml. The results suggest that addition of 25 ng/ml BMP4 had the best effects based on gene-specific marker expression.  相似文献   

7.
Ge YP  Lu GX  Shen YN  Liu WD 《Mycopathologia》2011,172(6):429-438
The aim of this study is to characterize extracellular phospholipase, proteinase, and esterase activities of Candida parapsilosis and C. metapsilosis isolated from clinical sources. Using PCR-restriction fragment length polymorphism (PCR–RFLP) of the secondary alcohol dehydrogenase (SADH) gene fragment, we identified 20 as C. parapsilosis and 11 as C. metapsilosis from 31 isolates of C. parapsilosis species complex. No C. orthopsilosis was identified. A significantly high isolation frequency of C. metapsilosis (35.5%) was observed. Subsequent evaluation of enzymatic profile showed that 90.5% of C. parapsilosis and 91.7% of C. metapsilosis isolates were phospholipase producers. No difference in phospholipase activity was observed between two species. In terms of proteinase, 81.0% of C. parapsilosis and 83.3% of C. metapsilosis isolates were positive. A higher level of proteinase activity was detected in C. parapsilosis. A remarkably high proportion of both C. parapsilosis and C. metapsilosis isolates exhibited strong phospholipase and proteinase activities, suggesting that the production of these two enzymes might be common for them. On the other hand, both species similarly displayed rare esterase activity, with only one C. parapsilosis and two C. metapsilosis isolates being positive. Our data may further add to the confusion concerning the hydrolytic enzymatic activities of the C. parapsilosis complex, and a wider collection of isolates and standardized methods may help to address the issue.  相似文献   

8.
The role of cuticular wax and the surface hydrophobicity of the fruit of the ‘Zaosu’ pear (Pyrus bretschneideri Rehd) in regulating the prepenetration phase of Alternaria alternata infection were analysed in vivo and in vitro. Results showed that cuticular wax on an intact fruit surface, as well as wax extracts mounted on silanized glass slides or onion epidermis, favoured the formation of short, differentiated germ tubes and large numbers of appressoria (APP) or infected hyphae (IH). Dewaxed fruits or no wax extract mounted on in vitro surfaces, however, enhanced germ tube elongation and inhibited or delayed the formation of infection structure. High surface hydrophobicity resulting from cuticular wax also stimulated infection structure formation, as contact angle (hydrophobicity) was positively correlated with APP formation but negatively correlated with germ tube elongation. Alternaria alternata cutinase enzyme activity was also induced by cuticular wax, both in vivo and in vitro. These findings suggest that the chemical composition and hydrophobicity of pear fruit cuticular wax are essential in facilitating fungal invasion by regulating the growth and differentiation of A. alternata during the prepenetration phase.  相似文献   

9.
  • This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3‐kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum.
  • After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h.
  • In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F‐actin. In the presence of cytochalasin B, an inhibitor of F‐actin, latrunculin B, an inhibitor of G‐actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical‐shaped chloroplasts were observed in the central region with a few F‐actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation.
  • It was concluded that F‐actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F‐actin. Thus, F‐actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
  相似文献   

10.
Candida parapsilosis is yeast capable of forming biofilms on medical devices. Novel approaches for the prevention and eradication of the biofilms are desired. This study investigated the anticandidal activity of sixteen essential oils on planktonic and biofilm cultures of C. parapsilosis complex. We used molecular tools, enumeration of colony-forming units, the colourimetric MTT assay, scanning electron microscopy (SEM) and a chequerboard assay coupled with software analyses to evaluate the growth kinetics, architecture, inhibition and reduction in biofilms formed from environmental isolates of the Candida parapsilosis complex; further, we also evaluated whether essential oils would interact synergistically with amphotericin B to increase their anticandidal activities. Of the environmental C. parapsilosis isolates examined, C. parapsilosis and C. orthopsilosis were identified. Biofilm growth on polystyrene substrates peaked within 48 h, after which growth remained relatively stable up to 72 h, when it began to decline. Details of the architectural analysis assessed by SEM showed that C. parapsilosis complex formed less complex biofilms compared with C. albicans biofilms. The most active essential oil was cinnamon oil (CO), which showed anticandidal activity against C. orthopsilosis and C. parapsilosis in both suspension (minimum inhibitory concentration—MIC—250 and 500 μg/ml) and biofilm (minimum biofilm reduction concentration—MBRC—1,000 and 2,000 μg/ml) cultures. CO also inhibited biofilm formation (MBIC) at concentrations above 250 μg/ml for both species tested. However, synergism with amphotericin B was not observed. Thus, CO is a natural anticandidal agent that can be effectively utilised for the control of the yeasts tested.  相似文献   

11.
A putative multidrug efflux pump, EmrD-3, belonging to the major facilitator superfamily (MFS) of transporters and sharing homology with the Bcr/CflA subfamily, was identified in Vibrio cholerae O395. We cloned the emrD-3 gene and evaluated its role in antimicrobial efflux in a hypersensitive Escherichia coli strain. The efflux activity of this membrane protein resulted in lowering the intracellular concentration of ethidium. The recombinant plasmid carrying emrD-3 conferred enhanced resistance to several antimicrobials. Among the antimicrobials tested, the highest relative increase in minimum inhibitory concentration (MIC) of 102-fold was observed for linezolid (MIC = 256 μg/ml), followed by an 80.1-fold increase for tetraphenylphosphonium chloride (TPCL) (156.2 μg/ml), 62.5-fold for rifampin (MIC = 50 μg/ml), >30-fold for erythromycin (MIC = 50 μg/ml) and minocycline (MIC = 2 μg/ml), 20-fold for trimethoprim (MIC = 0.12 μg/ml), and 18.7-fold for chloramphenicol (MIC = 18.7 μg/ml). Among the fluorescent DNA-binding dyes, the highest relative increase in MIC of 41.7-fold was observed for ethidium bromide (125 μg/ml) followed by a 17.2-fold increase for rhodamine 6G (100 μg/ml). Thus, we demonstrate that EmrD-3 is a multidrug efflux pump of V. cholerae, the homologues of which are present in several Vibrio spp., some members of Enterobacteriaceae family, and Gram-positive Bacillus spp.  相似文献   

12.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

13.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

14.
Composition of the mixed culture was varied in combined dark-light fermentation of wheat powder starch in order to improve hydrogen gas formation rate and yield. Heat-treated anaerobic sludge and pure culture of Clostridium beijerinckii (DSMZ 791 T ) were combined with two different light fermentation bacteria of Rhodobacter sphaeroides (RS-NRRL and RS-RV) in order to select a more suitable mixture resulting in high hydrogen yield and formation rate. A combination of the anaerobic sludge and RS-NRRL yielded the highest cumulative hydrogen (CHF = 140 ml), the highest yield (0.36 mol H2 mol−1 glucose) and specific hydrogen formation rate (2.5 ml H2 g−1 biomass h−1). During dark fermentation (70 h) hydrogen was produced simultaneously by the dark and light fermentation bacteria using glucose from hydrolyzed starch. However, only light fermentation bacteria produced hydrogen from VFA’s derived from dark fermentation after a long adaptation period.  相似文献   

15.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

16.
Plant defensins are antimicrobial peptides that exhibit mainly antifungal activity against a broad range of plant fungal pathogens. However, their actions against Candida albicans have not been extensively studied. The mRNA for γ-thionin, a defensin from Capsicum chinense, has been expressed in bovine endothelial cells. The conditioned medium of these cells showed antifungal activity on germ tube formation (60–70% of inhibition) and on the viability of C. albicans (70–80% of inhibition). Additionally, C. albicans was not able to penetrate transfected cells. Conditioned medium from these cells also inhibited the viability (80%) of the human tumor cell line, HeLa.  相似文献   

17.
The biological effect of Se and Cu2+ on Escherichia coli (E. coli) growth was studied by using a 3114/3236 TAM Air Isothermal Calorimeter, ampoule method, at 37°C. From the thermogenesis curves, the thermokinetic equations were established under different conditions. The kinetics showed that a low concentration of Se (1–10 μg/mL) promoted the growth of E. coli, and a high concentration of Se (>10 μg/mL) inhibited the growth, but the Cu2+ was always inhibiting the growth of E. coli. Moreover, there was an antagonistic or positive synergistic effect of Se and Cu2+ on E. coli in the different culture medium when Se was 1–10 μg/ml and Cu2+ was 1–20 μg/ml. There was a negative synergistic effect of Se and Cu2+ on E. coli when Se was higher than 10 μg/ml and Cu2+ was higher than 20 μg/ml. The antagonistic or synergistic effect between Se and Cu2+ on E. coli was related to the formation of Cu–Se complexes under the different experimental conditions chosen.  相似文献   

18.
The production of extracellular pullulanase by Bacillus licheniformis NRC22 was investigated using different fermentation modes. In batch culture maximal enzyme activity of 18 U/ml was obtained after 24 h of growth. In continuous fermentation by the free cells, maximal reactor productivity (4.15 KU/l/h) with enzyme concentration of 14.8 U/ml and specific productivity of 334.9 U/g wet cells/h was attained at a dilution rate of 0.28/h, over a period of 25 days. B. licheniformis NRC22 cells were immobilized on Ca-alginate. The immobilization conditions with respect to matrix concentration and cell load was optimized for maximal enzyme production. In repeated batch operation, the activity of the immobilized cells was stable during the 10 cycles and the activity remained between 9.8 and 7.7 U/ml. Continuous production of pullulanase by the immobilized cells was investigated in a packed–bed reactor. Maximal reactor productivity (7.0 KU/h) with enzyme concentration of 16.8 U/ml and specific productivity of 131.64 U/g wet cells/h was attained at dilution rate of 0.42/h. The enzyme activity in the effluent started to decline gradually to the level of 8.7 U/ml after 25 days of the operation.  相似文献   

19.
An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita.  相似文献   

20.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号