共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter F. Davison 《Analytical biochemistry》1976,75(1):129-141
The primary structures of similar proteins are frequently compared by assessing the homology of peptides cleaved from the proteins by enzymic or chemical means. Several methods have been described to adapt peptide mapping procedures to microgram quantities of protein, and some of these were tested. The radioiodine method of Bray and Brownlee ((1973) Anal. Biochem.55, 213) was studied in detail. Several modifications of this method are described; these include enzymic oxidation, iodination prior to electrophoresis, and an improved procedure for the recovery of proteins from polyacrylamide gels. 相似文献
2.
Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies. 相似文献
3.
Stable isotope probing - linking microbial identity to function 总被引:3,自引:0,他引:3
Stable isotope probing (SIP) is a technique that is used to identify the microorganisms in environmental samples that use a particular growth substrate. The method relies on the incorporation of a substrate that is highly enriched in a stable isotope, such as (13)C, and the identification of active microorganisms by the selective recovery and analysis of isotope-enriched cellular components. DNA and rRNA are the most informative taxonomic biomarkers and (13)C-labelled molecules can be purified from unlabelled nucleic acid by density-gradient centrifugation. The future holds great promise for SIP, particularly when combined with other emerging technologies such as microarrays and metagenomics. 相似文献
4.
An appraisal of methods used in coral recruitment studies 总被引:3,自引:0,他引:3
C. N. Mundy 《Coral reefs (Online)》2000,19(2):124-131
A new method for attaching individual artificial settlement plates directly to the reef surface using small stainless steel base plates is described. Recruitment of corals to settlement plates attached to the reef substratum and to steel mesh racks is compared. The effects of differences in depth, settlement plate angle, and local topography on recruitment of corals were also investigated. No significant difference in mean recruit density was found between settlement plates deployed using the two attachment methods. Small differences in depth and plate angle among replicate plates explained less than 6% of the variability in coral recruitment on replicate settlement plates. The direct-attachment method is less obtrusive, more cost and time efficient, and settlement plates can be deployed at precise locations. Additionally, because settlement plates are deployed individually rather than grouped on racks or frames, the direct-attachment method avoids complications associated with assumptions of independence implicit in most statistical procedures. Accepted: 24 November 1999 相似文献
5.
6.
The literature on bioassay methods for mycotoxin detection has been reviewed. An outline of the range of bioassay methods is given and the role of cytotoxicity tests in particular has been emphasized. 相似文献
7.
Response of microbial populations to environmental disturbance 总被引:18,自引:0,他引:18
Taxonomic and genetic diversities of microbial communities disturbed by chemical pollutants were lower than in undisturbed
reference communities. The dominant populations within the disturbed communities had enhanced physiological tolerances and
substrate utilization capabilities, indicating that generalized physiological versatility is an adaptive characteristic of
populations that successfully compete within disturbed communities. 相似文献
8.
Jiří Kopáček Bernard J. Cosby Christopher D. Evans Jakub Hruška Filip Moldan Filip Oulehle Hana Šantrůčková Karolina Tahovská Richard F. Wright 《Biogeochemistry》2013,115(1-3):33-51
Elevated and chronic nitrogen (N) deposition to N-limited terrestrial ecosystems can lead to ‘N saturation’, with resultant ecosystem damage and leaching of nitrate (NO3 ?) to surface waters. Present-day N deposition, however, is often a poor predictor of NO3 ? leaching, and the pathway of the ecosystem transition from N-limited to N-saturated remains incompletely understood. The dynamics of N cycling are intimately linked to the associated carbon (C) and sulphur (S) cycles. We hypothesize that N saturation is associated with shifts in the microbial community, manifest by a decrease in the fungi-to-bacteria ratio and a transition from N to C limitation. Three mechanisms could lead to lower amount of bioavailable dissolved organic C (DOC) for the microbial community and to C limitation of N-rich systems: (1) Increased abundance of N for plant uptake, causing lower C allocation to plant roots; (2) chemical suppression of DOC solubility by soil acidification; and (3) enhanced mineralisation of DOC due to increased abundance of electron acceptors in the form of ${{\text{SO}}_{ 4}}^{ 2-}$ SO 4 2 ? and NO3 ? in anoxic soil micro-sites. Here we consider each of these mechanisms, the extent to which their hypothesised impacts are consistent with observations from intensively-monitored sites, and the potential to improve biogeochemical models by incorporating mechanistic links to the C and S cycles. 相似文献
9.
Background
Codon adaptation indices (CAIs) represent an evolutionary strategy to modulate gene expression and have widely been used to predict potentially highly expressed genes within microbial genomes. Here, we evaluate and compare two very different methods for estimating CAI values, one corresponding to translational codon usage bias and the second obtained mathematically by searching for the most dominant codon bias. 相似文献10.
Background
Codon adaptation indices (CAIs) represent an evolutionary strategy to modulate gene expression and have widely been used to predict potentially highly expressed genes within microbial genomes. Here, we evaluate and compare two very different methods for estimating CAI values, one corresponding to translational codon usage bias and the second obtained mathematically by searching for the most dominant codon bias.Results
The level of correlation between these two CAI methods is a simple and intuitive measure of the degree of translational bias in an organism, and from this we confirm that fast replicating bacteria are more likely to have a dominant translational codon usage bias than are slow replicating bacteria, and that this translational codon usage bias may be used for prediction of highly expressed genes. By analyzing more than 300 bacterial genomes, as well as five fungal genomes, we show that codon usage preference provides an environmental signature by which it is possible to group bacteria according to their lifestyle, for instance soil bacteria and soil symbionts, spore formers, enteric bacteria, aquatic bacteria, and intercellular and extracellular pathogens.Conclusion
The results and the approach described here may be used to acquire new knowledge regarding species lifestyle and to elucidate relationships between organisms that are far apart evolutionarily. 相似文献11.
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences. 相似文献
12.
13.
We developed a microwell plate, high-throughput, screening method aimed at quantitating the tolerance of a panel of Gram-positive and Gram-negative bacteria to metals (Frankia sp., Escherichia coli, Cupriavidus metallidurans, Rhizobium leguminosarum, and Streptomyces scabies). Microbial viability was quantified using MTS; a tetrazolium salt converted to a water-soluble formazan through microbial reduction. In this paper, we present the stepwise development of the method, highlighting the main elements underlying its reliability, and compare results obtained with literature. We conclude the method is well suited to efficiently screen bacteria, including those that are filamentous and slow-growing, without the need for large amounts of inoculum which may not always be available. The method allows testing of compound gradients with sufficient replicates to generate statistically robust results, and is transposable to other types of cell proliferation assays such as those for antimicrobial susceptibility, and chemoresistance. 相似文献
14.
Background
Iron (Fe) deficiency in crops is a worldwide agricultural problem. Plants have evolved several strategies to enhance Fe acquisition, but increasing evidence has shown that the intrinsic plant-based strategies alone are insufficient to avoid Fe deficiency in Fe-limited soils. Soil micro-organisms also play a critical role in plant Fe acquisition; however, the mechanisms behind their promotion of Fe acquisition remain largely unknown.Scope
This review focuses on the possible mechanisms underlying the promotion of plant Fe acquisition by soil micro-organisms.Conclusions
Fe-deficiency-induced root exudates alter the microbial community in the rhizosphere by modifying the physicochemical properties of soil, and/or by their antimicrobial and/or growth-promoting effects. The altered microbial community may in turn benefit plant Fe acquisition via production of siderophores and protons, both of which improve Fe bioavailability in soil, and via hormone generation that triggers the enhancement of Fe uptake capacity in plants. In addition, symbiotic interactions between micro-organisms and host plants could also enhance plant Fe acquisition, possibly including: rhizobium nodulation enhancing plant Fe uptake capacity and mycorrhizal fungal infection enhancing root length and the nutrient acquisition area of the root system, as well as increasing the production of Fe3+ chelators and protons. 相似文献15.
Sara Kleindienst Sharon Grim Mitchell Sogin Annalisa Bracco Melitza Crespo-Medina Samantha B Joye 《The ISME journal》2016,10(2):400-415
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico''s deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf''s deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. 相似文献
16.
Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer 总被引:27,自引:0,他引:27
Clinical and epidemiologic studies have suggested an association between infectious agents and chronic inflammatory disorders and cancer. Better understanding of microbial pattern-recognition receptors and innate immune signaling pathways of the host is helping to elucidate the connection between microbial infection and chronic disease. We propose that a key aspect of pathogenesis is an aberrant epithelial barrier that can be instigated by microbial toxins, environmental insults, or the genetic predisposition of the host. Loss of epithelial integrity results in activation of resident inflammatory cells by microbial invaders or endogenous ligands. When coupled with a failure of normal control mechanisms that limit leukocyte activation, a cascade is established that induces chronic inflammation and its consequences. Here, we outline this mechanistic framework and briefly review how alteration of innate immune response genes in murine models can provide insights into the potential microbial origins of diverse conditions including Crohn's disease, psoriasis, atherosclerosis, diabetes, and liver cancer. 相似文献
17.
18.
19.
Biological methods for decontamination promise an improved substitute for ineffective and costly physico-chemical remediation methods, although so far only a fraction of the total microbial diversity (i.e. the culturable fraction with metabolic potential) has been harnessed for this purpose. Exploring and exploiting the "overlooked" genetic resource might ameliorate concerns associated with the degradation of recalcitrant and xenobiotic pollutants that are not degraded or only poorly degraded by known culturable bacteria. Recent advances in the molecular genetics of biodegradation and in knowledge-based methods of rational protein modification provide insight into the development of "designer biocatalysts" for environmental restoration. The application of such genetically engineered microorganisms (GEMs) in the environment has been limited, however, owing to the risks associated with uncontrolled growth and proliferation of the introduced biocatalyst and horizontal gene transfer. Programming rapid death of the biocatalyst soon after the depletion of the pollutant could minimize the risks in developing these technologies for successful bioremediation. 相似文献
20.
Kevin McCluskey Jill P Parsons Kimberly Quach Clifford S Duke 《Journal of biosciences》2017,42(2):321-331
While living collections are critical for biological research, support for these foundational infrastructure elements is inconsistent, which makes quality control, regulatory compliance, and reproducibility difficult. In recent years, the Ecological Society of America has hosted several National Science Foundation–sponsored workshops to explore and enhance the sustainability of biological research infrastructure. At the same time, the United States Culture Collection Network has brought together managers of living collections to foster collaboration and information exchange within a specific living collections community. To assess the sustainability of collections, a survey was distributed to collection scientists whose responses provide a benchmark for evaluating the resiliency of these collections. Among the key observations were that plant collections have larger staffing requirements and that living microbe collections were the most vulnerable to retirements or other disruptions. Many higher plant and vertebrate collections have institutional support and several have endowments. Other collections depend on competitive grant support in an era of intense competition for these resources. Opportunities for synergy among living collections depend upon complementing the natural strong engagement with the research communities that depend on these collections with enhanced information sharing, communication, and collective action to keep them sustainable for the future. External efforts by funding agencies and publishers could reinforce the advantages of having professional management of research resources across every discipline. 相似文献