共查询到20条相似文献,搜索用时 11 毫秒
1.
V. N. Verbenko L. V. Kuznetsova E. P. Krupyan V. I. Shalguev 《Russian Journal of Genetics》2009,45(10):1192-1199
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed
1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA
+ gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein. 相似文献
2.
B. M. Kurinenko N. A. Denivarova G. Yu. Yakovleva 《Applied Biochemistry and Microbiology》2005,41(1):47-50
The sensitivity of Escherichia coli strains K-12 and 055 to 2,4,6-trinitrotoluene (TNT) was found to correlate with the structural and functional properties of the outer lipoprotein membrane. The protective ability of the membrane of strain 055 is much lower than that of K-12. This is the cause of the greater sensitivity of 055 to the toxic action of TNT. High TNT concentrations (100–200 mg/l) suppressed the growth of 055, whereas K-12 grew at all TNT concentrations studied. Both strains adapted to high TNT concentrations by converting it by either nitroreduction or denitritation depending on concentration. The denitritation system of strain 055 started TNT degradation earlier than that of K-12.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 53–57.Original Russian Text Copyright © 2005 by Kurinenko, Denivarova, Yakovleva. 相似文献
3.
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane. 相似文献
4.
Function of the <Emphasis Type="Italic">rel</Emphasis> Gene in <Emphasis Type="Italic">Escherichia coli</Emphasis> 总被引:6,自引:0,他引:6
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited. 相似文献
5.
Yoshihiro Ojima Masayuki Azuma Masahito Taya 《World journal of microbiology & biotechnology》2018,34(12):185
The present article reviews several approaches for inducing flocculation of Escherichia coli cells. The common industrially used bacterium E. coli does not naturally have floc-forming ability. However, there are several approaches to induce flocculation of E. coli cells. One is induction by flocculants—polyvalent inorganic salts, synthetic polymeric flocculants, or bio-based polymeric materials, including polysaccharide derivatives. Another method is the induction of spontaneous flocculation by changing the phenotypes of E. coli cells; several studies have shown that physical treatment or gene modification can endow E. coli cells with floc-forming ability. Coculturing E. coli with other microbes is another approach to induce E. coli flocculation. These approaches have particular advantages and disadvantages, and remain open to clarification of the flocculation mechanisms and improvement of the induction processes. In this review, several approaches to the induction of E. coli flocculation are summarized and discussed. This review will be a useful guide for the future development of methods for the flocculation of non-floc-forming microorganisms. 相似文献
6.
Treponema denticola is a small anaerobic spirochete often isolated from periodontal lesions and closely associated with periodontal diseases. This bacterium possesses a particular arginine peptidase activity (previously called BANA-peptidase or trypsin-like enzyme) that is common to the three cultivable bacterial species most highly associated with severe periodontal disease. We recently reported the identification of the opdB locus that encodes the BANA-peptidase activity of T. denticola through DNA sequencing and mutagenesis studies. In the present study, we report expression of T. denticola OpdB peptidase in Escherichia coli. The opdB PCR product was cloned into pET30b and then transformed into the E. coli BL21 (DE3)/pLysS expression strain. Assays of enzymatic activities in E. coli containing T. denticola opdB showed BANA-peptidase activity similar to that of T. denticola. Availability of this recombinant expression system producing active peptidase will facilitate characterization of the potential role of this peptidase in periodontal disease etiology. 相似文献
7.
O. D. Hendrickson N. I. Smirnova A. V. Zherdev V. K. Gasparyan B. B. Dzantiev 《Applied Biochemistry and Microbiology》2017,53(1):107-113
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens. 相似文献
8.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase
mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen
as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction
on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the
peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The
peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling.
Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence
on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center
of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b
558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological
role for humans and animals. 相似文献
9.
Na-Rae Lee Ji-Yeong Yun Sun-Mee Lee Jin-Byung Park 《Biotechnology and Bioprocess Engineering》2015,20(6):1088-1098
Solvent stress occurs during whole-cell biocatalysis of organic chemicals. Organic substrates and/or products may accumulate in the cellular membranes of whole cells, causing structural destabilization of the membranes, which leads to disturbances in cellular carbon and energy metabolism. Here, we investigate the effect of cyclohexanone on carbon metabolism in Escherichia coli BL21 and Corynebacterium glutamicum ATCC13032. Adding cyclohexanone to the culture medium (i.e., glucose mineral medium) resulted in a decreased specific growth rate and increased cellular maintenance energy in both strains of bacteria. Notably, carbon metabolism, which is mainly involved to increase cellular maintenance energy, was very different between the bacteria. Carbon flux into the acetic acid fermentation pathway was dominantly enhanced in E. coli, whereas the TCA cycle appeared to be activated in C. glutamicum. In fact, carbon flux into the TCA cycle in E. coli appeared to be reduced with increasing amounts of cyclohexanone in the culture medium. Metabolic engineering of E. coli cells to maintain or improve TCA cycle activity and, presumably, that of the electron transport chain, which are involved in regeneration of cofactors (e.g., NAD(P)H and ATP) and formation of toxic metabolites (e.g., acetic acid), may be useful in increasing solvent tolerance and biotransformation of organic chemicals (e.g., cyclohexanone). 相似文献
10.
Dae Gyun An So Mi Yang Bong Gyu Kim Joong-Hoon Ahn 《Journal of industrial microbiology & biotechnology》2016,43(6):841-849
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli. 相似文献
11.
Lee JH Moon YH Kim N Kim YM Kang HK Jung JY Abada E Kang SS Kim D 《Biotechnology letters》2008,30(4):749-754
The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K
m of 3 mM with sucrose as a substrate; optimum activity was at 37°C and pH 6.7. The purified 742SPase transferred the glucosyl
moiety of sucrose to cytosine monophosphate (CMP).
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain. 相似文献
13.
14.
Ozaki S Imai H Iwakiri T Sato T Shimoda K Nakayama T Hamada H 《Biotechnology letters》2012,34(3):475-481
A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for
the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to
the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically
important residue. 相似文献
15.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes
were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED)
pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed
and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the
DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis
pathway, but the glucose consumption rate could not be improved.
Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally. 相似文献
16.
Inui M Suda M Kimura S Yasuda K Suzuki H Toda H Yamamoto S Okino S Suzuki N Yukawa H 《Applied microbiology and biotechnology》2008,77(6):1305-1316
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase
(CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric,
high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement
under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate
as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing
the genes of a strict anaerobe, Clostridium acetobutylicum. 相似文献
17.
Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm of E. coli was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK,
DsbA, and DsbC was effective in enhancing the solubility and biological activity. Non-fused Lip or Lip fusions heterologously
expressed in the periplasm of E. coli formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into
the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression
of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip–HlyA
fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA. 相似文献
18.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance. 相似文献
19.
Oh JY Kang MS Hwang HT An BK Kwon JH Kwon YK 《Journal of microbiology (Seoul, Korea)》2011,49(5):747-752
Escherichia coli has commonly been associated with diarrheal illness in humans and animals. Recently, E. albertii has been reported to be a potential pathogen of humans and animals and to be carried by wild birds. In the present study,
the prevalence and genetic characteristics of intimin-producing E. coli and E. albertii strains were evaluated in wild birds in Korea. Thirty one of 790 Enterobacteriaceae strains from healthy wild birds were positive for the intimin gene (eaeA) and twenty two of the 31 strains were identified as atypical enteropathogenic E. coli (aEPEC) that did not possess both EAF and bfpA genes. A total of nine lactose non-fermenting coliform bacterial strains were identified as E. albertii by PCR and sequence analysis of housekeeping genes. A total of 28 (90.3%) eaeA-positive strains were isolated from waterfowl.
Fifteen aEPEC (68.2%) and two E. albertii (22.2%) strains had a β-intimin subtype and 14 aEPEC strains harboring β-intimin belonged to phylogenetic group B2. AU eaeA-positive E. albertii and 3 aEPEC strains possessed the cytolethal distending toxin gene (cdtB). The eaeA-positive E. coli and E. albertii strains isolated from healthy wild birds need to be recognized as a potential pathogroup that may pose a potential threat
to human and animal health. These findings indicate that eaeA-positive E. coli as well as E. albertii can be carried by wild birds, posing a potential threat to human and animal health. 相似文献
20.
The ATP pool in Escherichia coli is a magnetic-dependent characteristic of microorganism vital activity. It depends on the values of the external static magnetic field and the existence of magnetic moment of magnesium isotopes nuclei added to the growth nutrient medium. The combined effects of the magnetic field 70–95 mT and magnesium magnetic isotope 25Mg on E. coli bacteria leads to increase intracellular concentration of ATP. Magnetic-field effects in the range of 0.8–16 mT, registered for all bacteria regardless of the magnesium-isotopic enrichment of nutrient medium, evidence about the sensitivity of intracellular processes to weak magnetic fields. 相似文献