首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." Stress-induced changes in immune function occur in animals across phyla, and these effects are usually immunosuppressive. The function of this immunomodulation remains elusive; however, the existence of specialized receptors on immune cells suggests that it is adaptive. A comparative approach may provide a useful perspective. Although invertebrates have simpler endocrine/neuroendocrine systems and immune systems than vertebrates, they have robust stress responses that include the release of stress hormones/neurohormones. Stress hormones modify immune function in mollusks, insects, and crustaceans. As in vertebrates, the effects of stress hormones/neurohormones on invertebrate immune function are complex, and are not always immunosuppressive. They are context-, stressor-, time- and concentration-dependent. Stress hormone effects on invertebrate immune function may help to re-align resources during fight-or-flight behavior. The data are consistent with the hypothesis that stress hormones induce a reconfiguration of networks at molecular, cellular and physiological levels that allow the animal to maintain optimal immunity as the internal environment changes. This reconfiguration enhances some immune functions while suppressing others. Knowing the molecular details of these shifts will be critical for understanding the adaptive function of stress hormones on immune function.  相似文献   

2.
Stress is known to suppress or dysregulate immune function and increase susceptibility to disease. Paradoxically, the short-term fight-or-flight stress response is one of nature's fundamental defense mechanisms that galvanizes the neuroendocrine, cardiovascular, and musculoskeletal systems into action to enable survival. Therefore, it is unlikely that short-term stress would suppress immune function at a time when it may be critically required for survival (e.g., in response to wounding and infection by a predator or aggressor). In fact, studies have shown that stress can enhance immune function under certain conditions. Several factors influence the direction (enhancing versus suppressive) of the effects of stress on immune function: (1) Duration: acute or short-term stress experienced at the time of activation of an immune response enhances innate and adaptive immune responses. Chronic or long-term stress can suppress or dysregulate immune function. (2) Leukocyte distribution: compartments (e.g., skin), that are enriched with immune cells during acute stress show immuno-enhancement, while those that are depleted of leukocytes (e.g., blood), show immuno-suppression. (3) The differential effects of physiologic versus pharmacologic stress hormones: Endogenous hormones in physiological concentrations can have immuno-enhancing effects. Endogenous hormones at pharmacologic concentrations, and synthetic hormones, are immuno-suppressive. (4) Timing: immuno-enhancement is observed when acute stress is experienced during the early stages of an immune response while immuno-suppression may be observed at late stages. The type of immune response (protective, regulatory/inhibitory, or pathological) that is affected determines whether the effects of stress are ultimately beneficial or harmful for the organism. Arguments based on conservation of energy have been invoked to explain potential adaptive benefits of stress-induced immuno-suppression, but generally do not hold true because most mechanisms for immuno-suppression expend, rather than conserve, energy. We propose that it is important to study, and if possible, to clinically harness, the immuno-enhancing effects of the acute stress response that evolution has finely sculpted as a survival mechanism, just as we study its maladaptive ramifications (chronic stress) that evolution has yet to resolve.  相似文献   

3.
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the ‘sharing’ of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response ‘borrowing’ molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also ‘reconfigure’ the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates.  相似文献   

4.
R Dantzer  K W Kelley 《Life sciences》1989,44(26):1995-2008
The old notion that stress exacerbates the progression of physical illness via its corticosteroid-mediated immunosuppressive effects must be revised. Experimental and clinical studies demonstrate that both laboratory and natural stressors alter the activities of lymphocytes and macrophages in a complex way that depends on the type of immune response, the physical and psychological characteristics of the stressor and the timing of stress relative to the induction and expression of the immune event. The influences of stress on immunity are mediated not only by glucocorticoids but also by catecholamines, endogenous opioids and pituitary hormones such as growth hormone. Sensitivity of the immune system to stress is not simply fortuitous but is an indirect consequence of the regulatory reciprocal influences that exist between the immune system and the central nervous system. The immune system receives signals from the brain and the neuroendocrine system via the autonomic nervous system and hormones and sends information to the brain via cytokines. These connections appear to be part of a long-loop regulatory feedback system that plays an important role in the coordination of behavioral and physiological responses to infection and inflammation.  相似文献   

5.
It is a confirmed fact that in females both the humoral and cell mediated immune response is more active than in males. A large amount of information supports the view that hormones of the endocrine system are intimately involved in this immunological dimorphism. Such hormones include the gonadal steroids, the adrenal glucocorticoids, growth hormone (GH) and prolactin (Prl) from the pituitary, thymic hormones, and substances generated by activated lymphocytes. It is suggested that a complex medley of these hormonal interactions effect both developing lymphocytes within the microenvironment and regulate adult effector cells. The most important of these hormonal interactions leading to immunological dimorphism are the effects elicited by estrogen (E) elaborated at elevated levels from the female ovary after puberty. Elevated E leads to basal GH secretion, increased Prl, and increased thymosin release, all of which are hypothesized to effect lymphocyte development and stimulate adult T- and B-cell function in females. Interactions of hormonal regulatory axes involving the hypothalamus, pituitary, gonads, adrenals, and thymus are also thought to be involved. Factors elaborated by activated immune cells including IL-1 and IL-2 may also play a role in down regulation of these responses. Finally, genetic components are also considered pertinent especially under conditions of pathological disequilibrium leading to autoimmune disease. While the benefits provided by immunological dimorphism are still not entirely clarified, since sex hormones are intimately involved in immunological regulation it is quite possible that the increased immune response in females allows them to compensate for the increased physiological stress which accompanies reproduction. The final outcome would thus be the assurance of reproductive success of the species.  相似文献   

6.
Blooms of cyanobacteria producing very toxic secondary metabolites (especially microcystins) are potent environmental stressors, hazardous not only to aquatic animals but also to public health. The purpose of this study was to investigate the effects of an extract containing microcystins on immune cells isolated from the common carp (Cyprinus carpio L.). In the present study it has been found that the extract induced apoptosis and inhibited in vitro lymphocyte proliferation. In addition, the results indicated the possible role of oxidative stress in this cytotoxicity and apoptosis. The in vivo investigations showed that the extract containing microcystins had greater suppressive effects on the essential functions of immune cells (intracellular reactive oxygen species production and lymphocyte proliferation) than the pure toxin alone. Moreover, immersion of fish in the toxic extract caused changes in the mRNA levels of various pro- and anti-inflammatory cytokines in carp leukocytes, while after exposure to the pure toxin, only IL1-β expression was markedly up-regulated. The observed modulatory effects on immune cells could have important implications for the health of planktivorous fish, which feed more frequently on toxic cyanobacteria.  相似文献   

7.
Immunosuppression in athletes involved in heavy training is undoubtedly multifactorial in origin. Training and competitive surroundings may increase the athlete's exposure to pathogens and provide optimal conditions for pathogen transmission. Heavy prolonged exertion is associated with numerous hormonal and biochemical changes, many of which potentially have detrimental effects on immune function. Furthermore, improper nutrition can compound the negative influence of heavy exertion on immunocompetence. An athlete exercising in a carbohydrate-depleted state experiences larger increases in circulating stress hormones and a greater perturbation of several immune function indices. The poor nutritional status of some athletes may predispose them to immunosuppression. For example, dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction. Although it is impossible to counter the effects of all of the factors that contribute to exercise-induced immunosuppression, it has been shown to be possible to minimize the effects of many factors. Athletes can help themselves by eating a well-balanced diet that includes adequate protein and carbohydrate, sufficient to meet their energy requirements. This will ensure a more than adequate intake of trace elements without the need for special supplements. Consuming carbohydrate (but not glutamine or other amino acids) during exercise attenuates rises in stress hormones, such as cortisol, and appears to limit the degree of exercise-induced immunosuppression, at least for non-fatiguing bouts of exercise. Evidence that high doses of anti-oxidant vitamins can prevent exercise-induced immunosuppression is also lacking.  相似文献   

8.
Plasma from pregnant women has a marked inhibitory effect on lymphocyte responses in vitro. While much evidence suggests that this is due to an immunologic mechanism, an apparent lack of specificity and the known suppressive effects of several hormones on immune function has led to speculation that the inhibitory effects could be due to increased concentrations of gestational hormones. We have investigated the effects of a wide range of concentrations of estrone, estradiol, estriol, progesterone, human chorionic gonadotropin (HCG), and hydrocortisone on lymphocyte responses to mitogens and allogeneic cells. None of these hormones were capable of inhibiting lymphocyte DNA synthesis even at concentrations several times the maximum physiologic plasma levels occurring during pregnancy. Very high, supraphysiologic concentrations were found to be inhibitory. In investigating the mechanism of the hormonal inhibition we found that if they were removed from the media at various times after initiation of culture, the estradiol, HCG, and to a lesser extent the hydrocortisone effects were all reversible. Estradiol and HCG differed from hydrocortisone in that the former were inhibitory only when added at the initiation of culture, whereas hydrocortisone was inhibitory even when added 24 hr later. In summary, while extremely high concentrations of gestational hormones are inhibitory, the quantities which occur physiologically in gestational plasmas are not able to suppress lymphocyte responses and thus cannot account for their inhibitory effects.  相似文献   

9.
The high pre-weaning mortality in farm animal species and poor welfare conditions of reproductive females question modern industrial farming acceptability. A growing body of literature has been produced recently, investigating the impact of maternal stress during gestation on maternal and offspring physiology and behavior in farm animals. Until now, the possible impact of prenatal stress on neonatal health, growth and survival could not be consistently demonstrated, probably because experimental studies use small numbers of animals and thus do not allow accurate estimations. However, the data from literature synthesized in the present review show that in ungulates, maternal stress can sometimes alter important maternal parameters of neonatal survival such as colostrum production (ruminants) and maternal care to the newborn (pigs). Furthermore, maternal stress during gestation can affect maternal immune system and impair her health, which can have an impact on the transfer of pathogens from the mother to her fetus or neonate. Finally, prenatal stress can decrease the ability of the neonate to absorb colostral immunoglobulins, and alter its inflammatory response and lymphocyte functions during the first few weeks of life. Cortisol and reproductive hormones in the case of colostrogenesis are pointed out as possible hormonal mediators. Field data and epidemiological studies are needed to quantify the role of maternal welfare problems in neonatal health and survival.  相似文献   

10.
Anterior pituitary hormones, stress, and immune system homeostasis   总被引:5,自引:0,他引:5  
An extensive, and controversial, literature concluding that prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid hormones are critical immunoregulatory factors has accumulated. However, recent studies of mice deficient in the production of these hormones or expression of their receptors indicate that there are only a few instances in which these hormones are required for lymphocyte development or antigen responsiveness. Instead, a case is made that their primary role is to counteract the effects of negative immunoregulatory factors, such as glucocorticoids, which are produced when the organism is subjected to major stressors. The immunoprotective actions of PRL, GH, IGF-I, and/or thyroid hormones in these instances may ensure immune system homeostasis and reduce the susceptibility to stress-induced disease. These immuno-enhancing effects could be exploited clinically in instances where the immune system is depressed due to illness or various treatment regimens.  相似文献   

11.
Abstract. Metamorphosis in the South African clawed frog, Xenopus laevis , is characterized by a striking loss of lymphocytes in the thymus, liver, and spleen. Changes in the proliferative responses of splenocytes and thymocytes to T cell mitogens and semi-allogeneic cells are also observed at metamorphosis. Because the levels of circulating thyroid hormones (TH) and corticosteroid hormones (CH) increase dramatically during the climax of metamorphosis, we have investigated the possible role of TH and CH as mediators of the changes in lymphocyte numbers or lymphocyte function. Here we report on the in vitro effects of CH and TH on lymphocyte viability and on phytohemagglutinin-P (PHA)-stimulated lymphocyte proliferation at prometamorphosis and climax of metamorphosis. We have observed consistently significant inhibition of proliferation by corticosterone. In contrast, we have observed inconsistent inhibition of proliferation by both thyroxine (T4) and triiodothyronine (T3). In short-term studies, the viability of thymocytes and splenocytes was reduced in the presence of CH but not TH.
These observations are consistent with a hypothesis that loss of larval lymphocytes and changes of lymphocyte function at metamorphosis may be due to elevated concentrations of CH rather than TH.
Because CH have been shown to enhance TH-induced effects during metamorphosis, we looked at the combined effects of these agents on PHA-stimulated lymphocyte proliferation. While each agent was inhibitory in several experiments, there was no significantly greater inhibition when splenic lymphocytes were cultured with both.  相似文献   

12.
Abstract

Links between the nervous and immune systems are suggested by the behavioural conditioning of Immunosuppression, the effects of brain lesions and stress on immune responses, and physlogical and chemical changes in the brain during immune responses. These links probably include glucocorticoids secreted from the adrenal gland, catecholamines and neuropeptides secreted by sympathetic terminals and the adrenal medulla, certain pituitary hormones, and polypeptides produced by cells of the immune system. The effect of glucocorticoids is not exclusively immunosuppressive, nor is it adequate to explain all the effects of stress. In vitro endogenous opiates facilitate lymphocyte proliferation and natural killer (NK) cell activity, but in vivo opiates appear to inhibit immune responses and impair tumour rejection. Increases of circulating glucocorticoids after infection and an apparent activation of cerebral catecholaminergic cells indicate that challenges to the immune system are interpreted physiologically as stressors. Moreover, they suggest that the brain may be able to monitor the progress of immune responses. Certain protein factors produced by the thymus gland (thymosins) may be able to counter stress-induced deficits in immunological responses.  相似文献   

13.
Immune function is better in females than in males of many vertebrate species, and this dimorphism has been attributed to the presence of immunosuppressive androgens in males. We investigated the influence of sex steroid hormones on immune function in male and female Siberian hamsters. Previous studies indicated that immune function was impaired in male and female hamsters housed under short-day photoperiods when androgen and estrogen concentrations were virtually undetectable. In experiment 1, animals were gonadally intact, gonadectomized (gx), or gx with hormone replacement. Females exhibited the expected increase in antibody production over males, independent of hormone treatment condition, whereas male and female gx animals exhibited decreased lymphocyte proliferation to the T cell mitogen, phytohemagglutinin (PHA) compared with intact animals, and this effect was reversed in gx hamsters following testosterone and estradiol treatment, respectively. In experiment 2, testosterone, dihydrotestosterone, and estradiol all enhanced cell-mediated immunity in vitro, suggesting that sex steroid hormones may be enhancing immune function through direct actions on immune cells. In experiment 3, an acute mitogen challenge of lipopolysaccharide significantly suppressed lymphocyte proliferation to PHA in intact males but not females, suggesting that males may be less reactive to a subsequent mitogenic challenge than females. Contrary to evidence in many species such as rats, mice, and humans, these data suggest that sex steroid hormones enhance immunity in both male and female Siberian hamsters.  相似文献   

14.
The stress-linked version of the immunocompetence handicap hypothesis has been proposed to account for inconsistencies in relationships between testosterone and immune response. The model has received some support from studies demonstrating roles of stress hormones in relationships between testosterone, immune function and secondary sexual ornamentation. Such work, however, has relied on artificial elevation of testosterone so may not reflect relationships in natural populations. We created human male facial stimuli on the basis of naturally co-occurring levels of salivary testosterone and the stress hormone cortisol. In Study 1 we tested female preferences for male faces with cues to combinations of the hormones across the menstrual cycle, and in Study 2 we tested perceptions of health and dominance in a novel set of facial stimuli. Females preferred cues to low cortisol, a preference that was strongest during the fertile phase of the menstrual cycle. The effects of cortisol on attractiveness and perceived health and dominance were contingent upon level of testosterone: the effects of the stress hormone were reduced when testosterone was high. We propose explanations for our results, including low cortisol as a cue to a heritable component of health, attractiveness as a predictor of low social-evaluative threat (and, therefore, low baseline cortisol) and testosterone as a proxy of male ability to cope efficiently with stressors.  相似文献   

15.
Ecological immunologists are interested in how immune function changes during different seasons and under different environmental conditions. However, an obstacle to answering such questions is discerning the effects of biological factors of interest and investigation artifacts such as handling stress. Here we examined handling stress and its effects on constitutive (noninduced) immune function via two protocols on captive red knots (Calidris canutus). We investigated how constitutive immunity responds to handling stress, how quickly these changes take place, and the practical implications for researchers interested in sampling baseline immune levels. We found that Staphylococcus aureus and Candida albicans killing increased with handling stress while total leukocyte and lymphocyte concentrations decreased. However, although corticosterone increased significantly and rapidly in response to handling stress, none of the 10 measures of constitutive immunity that we tested differed significantly from baseline within 20 or 30 min of capture. Thus, researchers interested in baseline immune function should sample animals as soon as possible after capture, but studies in species not easily sampled in less than 3 min (such as red knots) could still yield useful results.  相似文献   

16.
This paper reviews 22 published field studies that have found an association between exposure to environmental contaminants and alterations in thyroid gland structure, circulating thyroid hormones and vitamin A (retinoid) status in free-ranging populations of wildlife and fish. Vitamin A and thyroid hormones play critical roles during development, growth and function 'throughout life. Studies of captive wildlife and laboratory studies support a relationship between alterations in thyroid hormones and vitamin A status and exposure to dioxins, furans, and planar polychlorinated biphenyls, which bind to the aryl hydrocarbon receptor. Some studies have found adverse health effects in wildlife associated with exposure to polyhalogenated aromatic hydrocarbons and altered thyroid and retinoid status including: decreased reproductive success, immune system changes, dermatologic abnormalities and developmental deformities. A direct causal relationship between these effects and thyroid and retinoid changes has not been demonstrated. Field researchers studying the responses to these synthetic chemicals in wildlife and fish should include measurement of thyroid hormones and retinoids and histological examination of the thyroid gland in their study design as biomarkers of exposure to these chemicals in the environment.  相似文献   

17.
Elevation of glucocorticoid (GC) hormone levels is an integral part of stress response (as well as its termination) and immunomodulation. These hormones are also responsible for mobilizing energy stores by stimulation of gluconeogenesis and inhibition of protein synthesis. Elevation of GCs is thus incompatible with other protein-demanding processes, such as moult. Previous studies have shown that chronic elevation of GC hormones suppresses feather growth. Here, we asked whether similar effect would also occur in the case of acute GC elevation and induction of an inflammatory response by foreign antigen. We performed an experiment on captive wild-caught greenfinches (Carduelis chloris) injecting birds with phytohaemagglutinin (PHA) and dexamethasone (DEX) in a factorial design. To assess the possible somatic impacts of these manipulations, we removed one of the outermost tail feathers before the experiment and measured mass and rachis diameter and length of the replacement feathers grown in captivity. Immunostimulation by PHA reduced rachis length, but did not affect feather mass or rachis diameter. Single injection of a synthetic GC hormone DEX significantly reduced all three parameters of feather size. Altogether, these findings demonstrate the sensitivity of feather growth to manipulation of immune and adrenal functions. Our results corroborate the somatic costs of immune activation and suggest that even a short-term elevation of GC hormones may induce long-term somatic costs with a potential impact on fitness. Our findings also imply that a single injection of DEX, frequently used as a diagnostic tool, can have lasting effects and researchers must consider this when designing experiments.  相似文献   

18.
Pigs living in intensive husbandry systems may experience both acute and chronic stress through standard management procedures and limitations in their physical and social environment, which may have implications for their immune status. Here, the effect of a new breeding method where pigs were selected on their heritable influence on their pen mates'' growth, and environmental enrichment on the immune status of pigs was investigated. Hereto, 240 pigs with a relatively positive genetic effect on the growth of their pen mates (+SBV) and 240 pigs with a relatively negative genetic effect on the growth of their pen mates (−SBV) were housed in barren or straw-enriched pens from 4 to 23 weeks of age (n  =  80 pens in total). A blood sample was taken from the pigs before, three days after a 24 h regrouping test, and at week 22. In addition, effects of coping style, as assessed in a backtest, and gender were also investigated. Mainly, +SBV were found to have lower leukocyte, lymphocyte and haptoglobin concentrations than -SBV pigs. Enriched housed pigs had a lower neutrophil to lymphocyte (N:L) ratio and lower haptoglobin concentrations, but had higher antibody titers specific for Keyhole Limpet Hemocyanin (KLH) than barren housed pigs. No interactions were found between SBV class and housing. Furthermore, pigs with a proactive coping style had higher alternative complement activity and, in the enriched pens, higher antibody titers specific for KLH than pigs with a reactive coping style. Lastly, females tended to have lower leukocyte, but higher haptoglobin concentrations than castrated males. Overall, these results suggest that +SBV pigs and enriched housed pigs were less affected by stress than -SBV and barren housed pigs, respectively. Moreover, immune activation might be differently organized in individuals with different coping styles and to a lesser extent in individuals of opposite genders.  相似文献   

19.
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus–pituitary–adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant — ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.  相似文献   

20.
Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic-pituitary-adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic-pituitary-gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood-brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号