首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A method is described for the culture of normal and diseased human muscle cells. Cell outgrowth was obtained from 63/63 biopsies, and cells differentiated to form myotubes in 57/63 biopsies. The culture technique used readily permitted the growth of both normal and diseased human muscle cells.  相似文献   

2.
(1) Cultures of differentiated muscle cells have been grown from diseased human, mouse and chick skeletal muscle, and from cardiac muscle of the myopathic hamster. (2) Methods of culture established for normal embryonic and adult skeletal muscle cells have proved suitable for cultures of diseased muscle cells. (3) Myoblasts obtained from dy2J mouse muscle crushed in vivo before explanting fuse in culture and form morphologically normal myotubes. Studies of the effects of innervation by dy2J spinal cord neurones on the differentiation of normal, dy2J and dy myotubes have been inconclusive but it is probable that innervation does not play a part in the pathogenesis of this disorder. (4) Myoblasts prepared by trypsinization of embryonic dy muscle behave normally in culture and fuse to form myotubes that appear normal. It is not clear if myoblasts that migrate from explants of adult muscle in vitro fuse. Aggregates of non-fusing cells have been described, but under other culture conditions normal and abnormal forms of myotube have been observed. dy muscle fibres fail to regenerate even when cultured with normal spinal cord explants and dy nerves are without effect on regenerating normal muscle fibres. These tissue-culture studies suggest that the dy mouse mutation is a myopathic disorder. (5) Embryonic mdg myoblasts have a normal cell cycle in vitro and fuse to form well-differentiated myotubes with cross-striations. mdg myotubes have normal electro-physiological properties but do not contract spontaneously or on depolarization. The defect in the muscle of the mdg mutant appears to be a failure of excitation-contraction coupling. (6) Cells migrate earlier from explants of adult dystrophic chick muscle than from normal muscle but dystrophic chick myotubes appear morphologically normal. Myotubes prepared from embryonic dystrophic chick muscle become vacuolated and degenerate, changes that can be prevented by anti-proteases such as antipain. Lactic dehydrogenase isozyme subunit M4 is absent from dystrophic muscle in vivo but reappears in cultured myotubes. Dystrophic myotubes innervated in culture by either normal or dystrophic neurones exhibit bi-directional lcoupling and multiple innervation. These results suggest that there are changes in dystrophic myotubes and that chick muscular dystrophy is a myopathy. (7) Cardiac muscle cells from the cardiomyopathic hamster synthesize less actin and myosin than normal cells, and Z lines in dystrophic cells are irregularly arranged. The beat frequency of myopathic cardiac cells is lower than that of normal cells and declines more rapidly. Tissue-culture studies have not been made of hamster skeletal muscle. (8) Human dystrophic myotubes do not show degenerative changes in culture and have normal histochemical reactions. RNA synthesis appears normal in dystrophic myotubes but there may be changes in adenyl-cyclase activity and protein synthesis in dystrophic cells. Morphological and biochemical changes have been found in muscle cells cultured from a case of acid-maltase deficiency but phosphorylase activity re-appeared in myotubes cultured from biopsies of phosphorylase-deficient muscle. Innervation by normal mouse nerves does not induce degenerative changes in dystrophic myotubes. (9) Studies on the origins of myoblasts in explants of muscle fibres in culture suggest that in these conditions myoblasts are derived only from satellite cells and that this process may be the same in normal and diseased muscle.  相似文献   

3.
Summary A long-term cell culture system for adult cardiomyopathic hamster cardiac muscle cells has been established. The diseased and control hearts were dissociated into single cell suspension with the modifications of our previous technique using collagenase and hyaluronidase as applied to the dissociation of the adult rat heart. The postperfusion of the diseased heart with Krebs-Ringer phosphate buffer and bovine serum albumin was very helpful in obtaining greater yield of viable diseased muscle cells; the cells were cultured for 4 wk. Approximately 60% of the myocytes from the diseased heart and 85% of the myocytes from the normal heart attached to the substrates and survived throughout the culture period. Approximately 60 to 70% of the cardiac myocytes from the diseased and control hearts were bi- or multinucleated; 30% of the diseased and 80% of the normal myocytes showed rhythmic contractility. Electron microscopy revealed the presence of two kinds of cardiac muscle cells in the diseased cell culture on the basis of their myofibril content: one with scanty myofibrils and another with abundant myofibrils. Myocytes with sparse myofibrils showed certain characteristic features that included autophagic vacuoles, amorphous matrix of fine filamentous texture, scattered strips of myofibrils, and abnormal organization of the Z-line. Cardiac muscle cells with abundant myofibrillar content contained unorganized myofibrils in certain sarcomeres. These studies demonstrate the feasibility of maintaining diseased cardiac muscle cells from adult cardiomyopathic hamsters for at least 4 wk in monolayer culture. This study was supported by a grant from the American Heart Association of Michigan, National Institutes of Health grant HL-25482, and by an Oakland University Biomedical Research Support Grant.  相似文献   

4.
The interpretation of the majority of studies of Duchenne muscular dystrophy (DMD) has been complicated by the heterogeneous composition of the cultures used. In addition to muscle cells, muscle tissue contains adipocytes and fibroblasts and the proportion of these cell types varies, especially in disease states. To overcome this problem we developed culture conditions which permitted isolation and characterization of pure populations of clonally derived human muscle cells [1, 2]. Here we report the successful application of these methods to muscle cells from biopsies of individuals with diagnosed DMD. The normal and mutant human muscle cells were used in experiments of muscle differentiation in the same manner as cell lines. Frozen-stored cells were thawed, plated in a series of replicate plates, and allowed to differentiate under similar culture conditions. Yet, in contrast with cell lines, the cells were karyotypically normal, not altered by adaptation to long-term culture, and had a finite lifespan. We have systematically analysed specific properties of the normal and DMD muscle cells which differentiated in culture. The kinetics and extent of myoblast fusion, myotube morphology, and the accumulation and distribution of membrane acetylcholine receptors were monitored. In addition, the isozyme composition of creatine kinase and its intracellular and extracellular distribution were determined. Our results indicate that DMD muscle cells are fully capable of initiating myogenesis in culture and do not differ from normal muscle in several important parameters of differentiation.  相似文献   

5.
In continuation of our previous work on one-dimensional (1D) proton nuclear magnetic resonance (1H-NMR) of normal and diseased human muscle extracts we recorded the two-dimensional (2D) J-correlated proton magnetic resonance spectra of these extracts. Significant differences between normal and diseased muscle extracts, not observed in the 1D 1H-NMR spectra, were seen from their 2D connectivity contour patterns. Taurine was not present in cerebral palsy muscle extract while both normal and scoliosis muscles contained this metabolite. Only the normal muscle had carnitine. Carnosine was present in all muscles. alpha-Ketoglutarate was found only in the diseased muscle extracts. While the amino acids lysine, cysteine and glutamine were common to normal and diseased muscles, threonine was seen only in the diseased muscles. Additional small differences were detected in the 2D patterns of human muscle extracts.  相似文献   

6.
Patients with peripheral arterial disease (PAD) have abnormalities of carnitine metabolism that may contribute to their functional impairment. To test the hypothesis that muscle acylcarnitine generation (intermediates in oxidative metabolism) in patients with PAD provides a marker of the muscle dysfunction, 10 patients with unilateral PAD and 6 age-matched control subjects were studied at rest, and the patients were studied during exercise. At rest, biopsies of the gastrocnemius muscle in the patients' nonsymptomatic leg revealed a normal carnitine pool and lactate content compared with control subjects. In contrast, the patients' diseased leg had higher contents of lactate and long-chain acylcarnitines than controls. The muscle short-chain acylcarnitine content in the patients' diseased leg at rest was inversely correlated with peak exercise performance (r = -0.75, P less than 0.05). With graded treadmill exercise, only patients who exceeded their individual lactate threshold had an increase in muscle short-chain acylcarnitine content in the nonsymptomatic leg, which was identical to the muscle carnitine response in normal subjects. In the patients' diseased leg, muscle short-chain acylcarnitine content increased with exercise from 440 +/- 130 to 900 +/- 200 (SE) nmol/g (P less than 0.05). In contrast to the nonsymptomatic leg, there was no increase in muscle lactate content in the diseased leg with exercise, and the change in muscle carnitine metabolism was correlated with exercise duration (r = 0.82, P less than 0.01) and not with the lactate threshold. We conclude that energy metabolism in ischemic muscle of patients with PAD is characterized by the accumulation of acylcarnitines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Hassan GS  Douglas SA  Ohlstein EH  Giaid A 《Peptides》2005,26(12):2464-2472
The vasoactive peptide urotensin-II (U-II) is best known for its ability to regulate peripheral vascular and cardiac contractile function in vivo, and recent in vitro studies have suggested a role for the peptide in the control of vascular remodeling by inducing smooth muscle proliferation and fibroblast-mediated collagen deposition. Therefore, U-II may play a role in the etiology of atherosclerosis. In the present study we sought to determine the expression of U-II in coronary arteries from patients with coronary atherosclerosis and from normal control subjects, using immunohistochemistry and in situ hybridization. In normal coronary arteries, there was little expression of U-II in all types of cells. In contrast, in patients with coronary atherosclerosis, endothelial expression of U-II was significantly increased in all diseased segments (P < 0.05). Greater expression of U-II was noted in endothelial cells of lesions with subendothelial inflammation or fibrofatty lesion compared with that of endothelial cells underlined by dense fibrosis or minimal intimal thickening. Myointimal cells and foam cells also expressed U-II. In most diseased segments, medial smooth muscle cells exhibited moderate expression of U-II. These findings demonstrate upregulation of U-II in endothelial, myointimal and medial smooth muscle cells of atherosclerotic human coronary arteries, and suggest a possible role for U-II in the pathogenesis of coronary atherosclerosis.  相似文献   

8.
Adenylate deaminase activity was determined in cultured muscle cells of different maturation grades and muscle biopsies from normal subjects and four patients with a primary myoadenylate deaminase (MAD) deficiency. Adenylate deaminase activity was much lower in cultured human muscle cells than in normal muscle. The activity increased with maturation. The ratio of activities measured at 5 and 2 mM AMP decreased in the order: immature muscle cells greater than more mature muscle cells greater than muscle. Adenylate deaminase activity was detectable in muscle cell cultures of MAD-deficient patients. However, both at 2 and 5 mM AMP this activity was significantly lower than in cultured cells with the same high maturation grade obtained from control subjects, whereas the ratio between the activities at 5 and 2 mM AMP was higher. The observations indicate that transition from a fetal to an adult muscle isoenzyme of adenylate deaminase takes place in human cultured muscle cells during maturation. In cultures obtained from MAD-deficient patients this transition does not occur and only the fetal isoenzyme is present.  相似文献   

9.
Summary When multiple types of cells from normal and diseased human skin are required, techniques to isolate cells from small skin biopsies would facilitate experimental studies. The purpose of this investigation was to develop a method for the isolation and propagation of three major cell types (keratinocytes, microvascular endothelial cells, and fibroblasts) from a 4-mm punch biopsy of human skin. To isolate and propagate keratinocytes from a punch biopsy, the epidermis was separated from the dermis by treatment with dispase. Keratinocytes were dissociated from the epidermis by trypsin and plated on a collagen-coated tissue culture petri dish. A combination of two commercial media (Serum-Free Medium and Medium 154) provided optimal growth conditions. To isolate and propagate microvascular endothelial cells from the dermis, cells were released following dispase incubation and plated on a gelatin-coated tissue culture dish. Supplementation of a standard growth medium with a medium conditioned by mouse 3T3 cells was required for the establishment and growth of these cells. Epithelioid endothelial cells were separated from spindle-shaped endothelial cells and from dendritic cells by selective attachment toUlex europeus agglutinin I-coated paramagnetic beads. To establish fibroblasts, dermal explants depleted of keratinocytes and endothelial cells were attached to plastic by centrifugation, and fibroblasts were obtained by explant culture and grown in Dulbecco’s modified Eagle’s medium (DMEM) containing fetal bovine serum (FBS). Using these isolation methods and growth conditions, two confluent T-75 flasks of keratinocytes, one confluent T-25 flask of purified endothelial cells, and one confluent T-25 flask of fibroblasts could be routinely obtained from a 4-mm punch biopsy of human skin. This method should prove useful in studies of human skin where three cell types must be grown in sufficient quantities for molecular and biochemical analysis.  相似文献   

10.
The balance of serine proteases and inhibitors in nerve and muscle is altered during programmed- and injury-induced remodeling. A serpin, α1-antichymotrypsin (α1-ACT), and Kunitz-inhibitor containing forms of the β-amyloid precursor protein (βAPP) may be important components of this balance. In the present study, we analyzed their expression in primary cultures of human myogenic (satellite) cells that mimic myogenic differentiation using Western blotting and immunocytochemistry. In vitro results were compared to in vivo results from normal adult human skeletal muscle biopsies. Using an anti-α1-ACT polyclonal antibody, we detected a 62 kDa immunoreactive band both in cultured human myogenic cells (mononucleated myoblasts as well as multi-nucleated myotubes) and in extracts of human muscle biopsies. With a polyclonal anti-βAPP antibody we found two bands (105 and 120 kDa) in myoblasts and myotubes in culture. However, the same antibody recognized only a single band at 92 kDa in biopsies. By immunocytochemistry, both α1-ACT and βAPP were indistinctly present on localized to the surface of myoblasts in culture. In contrast, these inhibitors were dense on myotube surfaces, where they often formed distinct aggregates and frequently co-localized. In permeabilized muscle cells, α1-ACT and βAPP appeared to be localized to the perikarya of both myoblasts and myotubes. Confirming previous results, both α1-ACT and βAPP were present at the neuromuscular junction in human muscle sections. These developmental changes found during in vitro myogenesis for α1-ACT and βAPP, both serine protease inhibitors, reinforce the hypothesis that regulation of the serine proteases and serine protease inhibitors plays an important role in neuromuscular differentiation. © 1995 Wiley-Liss Inc.  相似文献   

11.
Summary Classification of human skeletal muscle into type I and type II fibres is frequently based on their weak or strong staining with the myosin adenosine triphosphatase reaction. In order to evaluate the reliability of this screening technique a combined histochemical and biochemical study was performed on normal and diseased skeletal muscle of human subjects. In the present investigation activities of enzymes which play a role in the aerobic and anaerobic pathways and which can characterize fibre type, were examined in human muscle specimens with disease of the neuromuscular system.Special attention is given to the maximal activities of phosphofructokinase and fructose-1,6-diphosphatase, the rate limiting enzymes for the regulation of the glycolysis and gluconeogenesis respectively. Moreover the activities of enzymes of the pentose phosphate pathway are determined.A most important feature of the biochemical findings is that the constancy of activity ratios of the examined enzymes, as is found apparently normal human skeletal muscle, was frequently not present in diseased human skeletal muscle. From these results and from the histochemical results it can be concluded that for fibre classification in diseased human skeletal muscle the histochemical demonstration of myosin ATPase activity exclusively is not sufficient, but that it is necessary to apply other enzyme histochemical techniques too.Moreover it was found that in diseased human skeletal muscles the activity of the NADPH regenerating enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was strongly increased. A third observation was the relative decrease of the activity of the examined aerobic enzymes in affected muscle fibres of neurogenic muscle diseases.  相似文献   

12.
The aim of this study was to determine whether similar populations of smooth muscle cells, in relation to contractile and cytoskeletal proteins, are present in normal and diseased human coronary arteries and normal and injured rat and rabbit arteries. Rat aortae and rabbit carotid arteries were de-endothelialised and the resulting neointimal thickening examined at set time points 2-24 weeks later. Immunohistochemistry revealed that arteries had three distinct populations of cells in respect to alpha-smooth muscle actin, smooth muscle myosin heavy chain and vimentin (staining intensities '-', '+' or '++' for each protein), but only two populations in respect to desmin ('-' and '+'). The different populations of cells were found in the neointima at all times after injury, in human atherosclerotic plaque and in the media of diseased, injured and uninjured vessels, although in different proportions. It was concluded that arteries of the human, rat and rabbit have cells with a wide spectrum of contractile and cytoskeletal proteins. Expression of the different proteins did not reflect the state of the artery after injury or during the disease process, and was not associated with the expansion of a subset of cells within the artery wall.  相似文献   

13.
Hua J  Yeoh KG  Ng HC  Zheng PY  Lim SG  Ho B 《Microbios》1998,96(384):95-101
Factors influencing the successful isolation of Helicobacter pylori from human gastric biopsies were studied. Within 24 h, each of the gastric biopsies was inoculated onto chocolate blood agar media and incubated for up to 2 weeks. Among 63 (70%) culture positive cases in 90 patients, 58 (64%) cases were culture positive for both specimens, while five (6%) cases were culture positive in only one biopsy. Of the 63 positive cultures, 51 H. pylori strains (81%) grew on both media with and without antibiotics. Eight strains (13%) grew only on medium without antibiotics, while four isolates (6%) were obtained only from medium with antibiotics. These results support the previous histological observation of patchy colonization of H. pylori in the stomach. The success rate for culture of H. pylori from gastric biopsies increased when two biopsies were taken and inoculated on chocolate blood agar media with and without antibiotics.  相似文献   

14.
Glucose uptake in human and animal muscle cells in culture   总被引:5,自引:0,他引:5  
Human muscle cells were grown in culture from satellite cells present in muscle biopsies and fusion-competent clones were identified. Hexose uptake was studied in fused myotubes of human muscle cells in culture and compared with hexose uptake in myotubes of the rat L6 and mouse C2C12 muscle cell lines. Uptake of 2-deoxyglucose was saturable and showed an apparent Km of about 1.5 mM in myotubes of all three cell types. The Vmax of uptake was about 6000 pmol/(min.mg protein) in human cells, 4000 pmol/(min.mg protein) in mouse C2C12 muscle cells, and 500 pmol/(min.mg protein) in L6 cells. Hexose uptake was inhibited approximately 90% by cytochalasin B in human, rat, and mouse muscle cell cultures. Insulin stimulated 2-deoxyglucose uptake in all three cultures. The hormone also stimulated transport of 3-O-methylglucose. The sensitivity to insulin was higher in human and C2C12 mouse myotubes (half-maximal stimulation observed at 3.5 X 10(-9) M) than in rat L6 myotubes (half-maximal stimulation observed at 2.5 X 10(-8) M). However, insulin (10(-6) M) stimulated hexose uptake to a larger extent (2.37-fold) in L6 than in either human (1.58-fold) or mouse (1.39-fold) myotubes. It is concluded that human muscle cells grown in culture display carrier-mediated glucose uptake, with qualitatively similar characteristics to those of other muscle cells, and that insulin stimulates hexose uptake in human cells. These cultures will be instrumental in the study of human insulin resistance and in investigations on the mechanism of action of antidiabetic drugs.  相似文献   

15.
Muscle bioengineering is proposed as a treatment option for various conditions requiring restoration of muscle function. In order to allow for rapid clinical translation culture conditions have to be optimized for human application. The optimal isolation and culture technique should be able to support cell growth and differentiation using defined media only. Therefore, we have evaluated alternative culture conditions to determine the optimal growth condition for the engineering of human skeletal muscle. In this research, we present protocols for consistent isolation and growth of human muscle precursor cells (MPCs). MPCs were grown from human biopsies and expanded in culture using defined media and collagen coated dishes only. The best results were achieved using a one-step pre-plating and by supplementing the growth medium with insulin, dexamethasone, human basic fibroblast growth factor (hFGF) and human epithelial growth factor (hEGF). Detailed cell characterization using fluorescence-activated cell-sorting analysis and morphological analysis at different passages were performed. Further, the applicability of these cells for tissue engineering purposes was assessed by measuring expansion potential, formation of myofibers and fused myotubes. We have established a culture technique for human MPCs that allows for reliable cell growth and expansion using collagen coated dishes and defined media only. Cell characterization demonstrated a muscle phenotype and the ability to form myofibers in vitro.  相似文献   

16.
Resistin is secreted by rodent fat cells and was recently postulated to be an important link between obesity and insulin resistance. We examined Resistin gene expression with real-time RT-PCR in human isolated fat cells, adipose tissue, and muscle from 42 individuals of varying degrees of overweight and who had normal insulin sensitivity or were insulin-resistant or Type 2 diabetic. Resistin was not expressed in human muscle nor was it expressed in most human isolated fat cells or intact biopsies. No difference was found between normal, insulin-resistant, or Type 2 diabetic samples. However, a very low but specific Resistin expression could be demonstrated in isolated fat cells and intact adipose tissue from some individuals (n = 3 and n = 4, respectively). There was no evidence for the expression of splice variants in the human samples. Thus, Resistin does not seem to be an important link to insulin resistance and Type 2 diabetes in human.  相似文献   

17.
A growing body of evidence suggests that the angiotensin II fragments, Ang(1-7) and Ang(3-8), have a vasoactive role, however ACE2, the enzyme that produces Ang(1-7), or AT4R, the receptor that binds Ang (3-8), have yet been simultaneously localised in both normal and diseased human conduit blood vessels. We sought to determine the immunohistochemical distribution of ACE2 and the AT4R in human internal mammary and radial arteries from patients undergoing coronary artery bypass surgery. We found that ACE2 positive cells were abundant in both normal and diseased vessels, being present in neo-intima and in media. ACE2 positive immunoreactivity was not present in the endothelial layer of the conduit vessels, but was clearly evident in small newly formed angiogenic vessels as well as the vaso vasorum. Endothelial AT4R immunoreactivity were rarely observed in either normal and diseased arteries, but AT4R positive cells were observed adjacent to the internal elastic lamine in the internal mammary artery, in the neo-intima of radial arteries, as well as in the media of both internal mammary artery and radial artery. AT4R was abundant in vaso vasorum and within small angiogenic vessels. Both AT4R and ACE2 co-localised with smooth muscle cell alpha actin. This study identifies smooth muscle cell alpha actin positive ACE2 and AT4R in human blood vessels as well as in angiogenic vessels, indicating a possible role for these enzymes in pathological disease.  相似文献   

18.
We have reported morphological and functional features of cells isolated from human bronchial biopsies. Both epithelial and fibroblastic cells were isolated from the same biopsies using collagenase. A few models have been established to study normal bronchial response to various agents and to understand the mechanisms responsible for some disorders, such as asthma. We produced three-dimensional bronchial equivalents in culture, using human epithelial and fibroblastic cells. We previously showed that peripheral anchorage can prevent the dramatic collagen contraction in gels seeded with fibroblasts when properly adapted to the size and type of cultured tissues. Our bilayered bronchial constructs were anchored and cultured under submerged conditions and at the air-liquid interface. Three culture media were compared. Serum-free medium supplemented with retinoic acid (5 x 10(-8) M) was found to be the best for maintenance of bronchial cell properties in the reconstructed bronchial tissue. Immunohistological and ultrastructural analyses showed that these equivalents present good structural organization, allowing ciliogenesis to occur in culture. Moreover, human bronchial goblet cells could differentiate and secrete mucus with culture time. Laminin, a major constituent of the basement membrane and basal cells, was also detected at the mesenchymoepithelial interface. Such models will be useful for studying human bronchial properties in vitro.  相似文献   

19.
We have established long-term human myogenic cultures from adult human skeletal muscle biopsies by infecting primary explant cultures with an amphotropic retroviral construct encoding a temperature-sensitive SV40 large T antigen, tsA58-U19. Infected myoblasts expressed the large T antigen and showed greatly enhanced proliferative capacity when cultured at 33°C, compared with noninfected cells. When the infected cultures were incubated at 39°C, the cells withdrew from cycle, aligned, and fused to form multinucleated myotubes which expressed certain antigens that are similarly expressed in nontransduced differentiating muscle cells. Myogenic clones with greatly increased proliferative capacity were generated, for the first time, from biopsies obtained from Duchenne muscular dystrophy patients as well as from normal, dystrophin-positive individuals. Cell lines produced by this approach may prove valuable forin vitrostudies of myogenesis and for investigating the cellular and molecular consequences of inherited muscle diseases.  相似文献   

20.
Pectoral muscle from normal and dystrophic New Hampshire chicken embryos was dissociated and grown in vitro. Marked differences between the two types of cell cultures were observed with the light and electron microscopes during early myogenic stages. The diseased myoblasts assumed a polarized affect and fused into smaller and fewer myotubes. Pseudostraps rather than true muscle straps were often seen in diseased cultures. There was also a delay in the appearance of myosin containing thick myofilaments in differentiating dystrophic muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号