首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to avoid the metabolic burden of protein expression during cell growth, and to avoid potential toxicity of recombinant proteins, microbial expression systems typically utilize regulated expression vectors. In contrast, constitutive expression vectors have usually been utilized for isolation of protein expressing mammalian cell lines. In mammalian systems, inducible expression vectors are typically utilized for only those proteins that are toxic when overexpressed. We developed a tetracycline regulated expression system in CHO cells, and show that cell pools selected in the uninduced state recover faster than those selected in the induced state even though the proteins showed no apparent toxicity or expression instability. Furthermore, cell pools selected in the uninduced state had higher expression levels when protein expression was turned on only in production cultures compared to pools that were selected and maintained in the induced state through production. We show a titer improvement of greater than twofold for an Fc-fusion protein and greater than 50% improvement for a recombinant antibody. The improvement is primarily due to an increase in specific productivity. Recombinant protein mRNA levels correlate strongly with protein expression levels and are highest in those cultures selected in the uninduced state and only induced during production. These data are consistent with a model where CHO cell lines with constitutive expression select for subclones with lower expression levels.  相似文献   

2.
3.
Human transferrin (hTf) is a serum glycoprotein involved in Fe3+ transport. Here, a plasmid encoding the hTf gene fused with a hexahistidine (His6) epitope tag under Drosophila metallothionein promoter (pMT) was stably transfected into Drosophila melanogaster S2 cells as a nonlytic plasmid-based system. Following 3 days of copper sulfate induction, transfected S2 cells were found to secrete hTf into serum-free culture medium at a competitively high expression level of 40.8 microg/mL, producing 6.8 microg/mL/day in a 150-mL spinner flask culture. Purification of secreted recombinant hTf using immobilized metal affinity chromatography (IMAC) yielded 95.5% pure recombinant hTf with a recovery of 32%. According to MALDI-TOF mass spectrometry analysis, purified S2 cell-derived His6-tagged recombinant hTf had a molecular weight (76.4 kDa) smaller than that of native apo-hTf (78.0 kDa). 2-Dimensional gel electrophoresis patterns showed recombinant hTf had a simpler and less acidic profile compared to that of native hTf. These data suggest recombinant hTf was incompletely (noncomplex) glycosylated and lacked sialic acids on N-glycans. However, this difference in N-glycan structure compared to native hTf had no effect on the iron-binding activity of recombinant hTf. The present data show that a plasmid-based stable transfection S2 cell system can be successfully employed as an alternative for producing secreted functional recombinant hTf.  相似文献   

4.
Xu ZL  Mizuguchi H  Mayumi T  Hayakawa T 《Gene》2003,309(2):145-151
Positively and tightly regulated gene expression is essential for gene function and gene therapy research. The currently-used inducible gene expression systems include tetracycline (Tet-on and T-REx), ecdysone, antiprogestin and dimerizer-based systems. Adenovirus (Ad) vectors play an important role in gene function and gene therapy research for their various advantages over other vector systems. Previously, we reported the inferiority of the Tet-on system as an inducible gene expression system in the context of Ad vectors in comparison with the Tet-off system. In this study, to identify an optimal system for regulated gene expression from Ad vectors, we made a rigorous direct comparison of these five inducible gene expression systems in three cell lines using the luciferase reporter gene. The highest sensitivity to the respective inducer was that of the dimerizer system, followed by the antiprogestin system. The lowest basal expression and the highest induction factor were both characteristic of the dimerizer system. Furthermore, the dimerizer and T-REx systems exhibited much higher induced expression levels than the other three systems. The elucidation of the characteristic features of each system should provide important information for widespread and feasible application of these systems. Overall, these results suggest the most appropriate inducible gene expression system in the context of Ad vectors to be the dimerizer system.  相似文献   

5.
A eukaryotic vector-host cell system is described where the additive transactivating effects of HIV-1 tat and adenovirus E1A on HIV-1 long terminal repeat (LTR) are exploited to increase expression of exogenous cDNAs. Human 143B and 293 cells, the latter constitutively producing E1A, were used as host cell lines. The bacterial gene chloramphenicol acetyltransferase (CAT) and the hepatitis B surface antigen (HBs-Ag) gene were employed as reporter genes inserted in pRPneoU3R, an episomal vector containing BK virus replication origin and early region, where cDNAs are expressed under control of HIV-1 LTR. The 293 cells were transformed by tat expression vectors to constitutively express tat. Stable cell clones of 293tat cells, constitutively expressing CAT after transformation with pRPneoU3R-CAT, show a CAT activity 600-fold higher than normal 293 transformed cells. CAT expression obtained in normal 293 cells can be transiently increased 10-fold by transfection by vectors expressing tat. The 293tat cells transformed by pRPneoU3R-HBs, an episomal vector expressing HBs-Ag from HIV LTR, yielded stable cell clones secreting HBs-Ag in the culture medium at a concentration up to 744 ng/ml or 44 ng/10(6) cells/24 h, 48-fold more than normal 293 cells. The use of this system for constitutive or inducible expression of sequences under control of HIV-1 LTR is discussed in view of possible applications for diagnostic, vaccinal and therapeutic purposes.  相似文献   

6.
7.
Human embryonic kidney (HEK293) cells were stably transduced with a retroviral vector containing an expression cassette for a short-lived green fluorescent protein (d2EGFP) and the neomycin resistance gene (Neor). When Neor HEK293 clones were treated with proteasome inhibitors, lactacystin or MG132, an increase in the constitutive levels of d2EGFP expression was observed. Based on flow cytometry, proteasome inhibitors induced a 5- to 10-fold increase in the fluorescent intensity of d2EGFP in HEK293 cell clones. However, in the presence of proteasome inhibitors, HEK293 clones showed a 4- to 6.5-fold increase in d2EGFP concentration as determined by western blot analysis. Our data suggest that d2EGFP is a useful indicator of proteasome inhibition. Therefore, stable expression of d2EGFP in mammalian cells is potentially useful for high-throughput screening of cDNAs or pharmaceutical drugs that repress proteasome functions in vivo.  相似文献   

8.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

9.
Several strategies for regulated stable transgene expression in mammalian cells have been described. These strategies have different strengths and weaknesses, however they all share a common problem, namely predictability in application. Here we address this problem using the leading strategy for ligand inducible transgene expression, the tetracycline repressor system. Initially, we found the best stable clone out of 48 examined showed only 6-fold inducibility. Hence we looked for additions and modifications that improve the chances of a successful outcome. We document three important aspects; first, use of a mammalian codon-optimized tetracycline repressor gene; second, addition of a steroid hormone receptor ligand binding domain to the tetracycline repressor-virion protein 16 fusion protein activator; third, flanking the tet-operator/transgene cassette with insulator elements from the chicken beta-globin locus. By inclusion of these three design features, 18/18 clones showed low basal and highly inducible (>50 x) expression.  相似文献   

10.
Human serum transferrin (hTf) is the major iron‐binding protein in human plasma, having a vital role in iron transport. Additionally, hTf has many other uses including antimicrobial functions and growth factor effects on mammalian cell proliferation and differentiation. The multitask nature of hTf makes it highly valuable for different therapeutic and commercial applications. However, the success of hTf in these applications is critically dependent on the availability of high‐quality hTf in large amounts. In this study, we have developed plants as a novel platform for the production of recombinant (r)hTf. We show here that transgenic plants are an efficient system for rhTf production, with a maximum accumulation of 0.25% total soluble protein (TSP) (or up to 33.5 μg/g fresh leaf weight). Furthermore, plant‐derived rhTf retains many of the biological activities synonymous with native hTf. In particular, rhTf reversibly binds iron in vitro, exhibits bacteriostatic activity, supports cell proliferation in serum‐free medium and can be internalized into mammalian cells in vitro. The success of this study validates the future application of plant rhTf in a variety of fields. Of particular interest is the use of plant rhTf as a novel carrier for cell‐specific or oral delivery of protein/peptide drugs for the treatment of human diseases such as diabetes. To demonstrate this hypothesis, we have additionally expressed an hTf fusion protein containing glucagon‐like peptide 1 (GLP‐1) or its derivative in plants. Here, we show that plant‐derived hTf‐GLP‐1 fusion proteins retain the ability to be internalized by mammalian cells when added to culture medium in vitro.  相似文献   

11.
Chinese hamster ovary (CHO) cells are commonly used for the expression of therapeutic proteins. To increase the titer output of CHO production cultures either specific productivity (Qp), growth, or both need to be increased. Generally, Qp and growth are inversely correlated and cell lines with high Qp have slower growth and vice versa. During the cell line development (CLD) process, the faster-growing cells tend to take over the culture and represent the majority of the isolated clones post single cell cloning. In this study, combinations of regulated and constitutive expression systems were used to supertransfect targeted integration (TI) cell lines expressing the same antibody either constitutively or under-regulated expression. Clone screening with a hybrid expression system (inducible + constitutive) allowed identification and selection of higher titer clones under uninduced conditions, without a negative impact on cell growth during clone selection and expansion. Induction of the regulated promoter(s) during the production phase increased the Qp without negatively affecting growth, resulting in approximately twofold higher titers (from 3.5 to 6–7 g/L). This was also confirmed using a 2-site TI host where the gene of interest was expressed inducibly from Site 1 and constitutively from Site 2. Our findings suggest that such a hybrid expression CLD system can be used to increase production titers, providing a novel approach for expression of therapeutic proteins with high titer market demands.  相似文献   

12.
An inducible expression system using control elements of the tetracycline resistance operon has recently shown promise for conditional gene expression of any gene of interest. However, intensive screening of multiple independent clones is often required to find cell lines with optimal induction characteristics. By coupling expression of the gene of interest with a fluorescent marker, we have developed a novel fluorescence activated cell sorting (FACS) based strategy to isolate cells with desirable expression characteristics, thus alleviating the laborious isolation and analysis of multiple independent clones.  相似文献   

13.
14.
Nanog基因是在早期胚胎和干细胞等多能性细胞中特异表达的重要基因,但有关猪Nanog基因功能的相关研究甚少。四环素诱导干扰载体是一种可通过四环素等药物条件性诱导干扰目的基因的载体,尤其适用于在发育过程中起着关键作用的基因沉默。常规的四环素干扰系统为二元载体,与一元载体相比获得针对特定基因干扰的稳定细胞系所需周期更长。首先通过构建pGenesil 1.0-shRNA重组干扰载体,瞬时转染稳定过表达猪Nanog基因的猪胎儿成纤维细胞后通过Realtime-PCR筛选出干扰效率可达80%以上的干扰片段。之后将筛选得到的干扰片段插入到改造的一元四环素诱导干扰载体TREsilencer,对稳定表达猪Nanog基因的猪胎儿成纤维细胞进行了瞬时转染。实验分别通过光密度检测以及Realtime-PCR检测了不同浓度doxycycline的诱导效率和干扰效率。结果表明,所构建的四环素诱导干扰载体TREsilencer-shRNA5随着四环素浓度的增加,诱导Nanog基因的干扰效率增加,在处理浓度为1μg/ml时干扰效率可达70%以上,为后续得到可诱导的稳定干扰猪Nanog基因的细胞系和进一步研究猪Nanog基因功能奠定了基础。  相似文献   

15.
BACKGROUND: RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS: In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS: The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS: The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.  相似文献   

16.
A Iida  S T Chen  T Friedmann    J K Yee 《Journal of virology》1996,70(9):6054-6059
The ability to regulate gene expression via exogenous stimuli will facilitate the study of gene functions in mammalian cells. In the present study, we modified the tetracycline-controlled inducible system by the addition of the ligand-binding domain of the estrogen receptor to the carboxy terminus of the tTA transactivator. A single retroviral vector can transduce both the transactivator gene and the gene of interest controlled by the tTA-inducible promoter into mammalian cells. We show that cell lines expressing the transactivator can readily be established and that expression of the gene of interest depends on the removal of tetracycline and the addition of estrogen. By using this system, cell lines with inducible expression of the G protein of vesicular stomatitis virus, a potentially toxic gene product, were established. The combination of a powerful inducible system and retrovirus-mediated gene transfer can not only be used to study gene function but may also be applied in the future to clinical trials in human gene therapy.  相似文献   

17.
As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS coding sequence attached to a minimal mammalian cell promoter was placed downstream of seven tandem tetracycline operator sequences. Cotransfection of HeLa cell lines expressing a tetracycline transactivator protein, carrying a tetracycline repressor domain linked to part of a herpesvirus VP16 activation domain, with the E. coli GlnRS gene and the E. coli glutamine-inserting amber suppressor tRNA gene resulted in suppression of the amber codon in a reporter chloramphenicol acetyltransferase gene. The tetracycline transactivator-mediated expression of E. coli GlnRS was essentially completely blocked in HeLa or COS-1 cells grown in the presence of tetracycline. Concomitantly, both aminoacylation of the suppressor tRNA and suppression of the amber codon were reduced significantly in the presence of tetracycline.  相似文献   

18.
The tetracycline system has limitations in liver cells, such as toxic effects and low controllability. We generated different retroviral vectors for controlled gene expression in liver cells, in which the regulatory elements were arranged in different patterns. Only the organization of the tetracycline system in an autoregulatory loop in the sense orientation results in high retroviral titres and in tight regulation of gene expression in highly differentiated hepatoma cells. Because of the toxicity of the transactivator tTA, it was impossible to establish doxycycline-dependent stable HepG2 cell lines. To avoid sequelching-related toxicity in liver cells, we replaced tTA with new non-toxic transactivators. By using tTA2, tTA3 and tTA4, we observed tight doxycycline-dependent gene expression in 23, 49 and 45% of the isolated clones. The tTA4 vector was used to transduce hepatocytes of mice in vivo. Tight doxycycline-controllable gene regulation was also observed in the liver of mice, confirming our hypothesis that retroviral vectors with autoregulatory loops of the tetracycline system facilitate inducible gene expression in the liver in vivo. Our new retroviral vector system allows rapid isolation of controllable clones in a very high yield and should make the tetracycline system more applicable to liver-derived cells and in liver gene therapy in vivo.  相似文献   

19.
Aβ (amyloid β-peptide) has a central role in AD (Alzheimer's disease) where neuronal toxicity is linked to its extracellular and intracellular accumulation as oligomeric species. Searching for molecules that attenuate Aβ aggregation could uncover novel therapies for AD, but most studies in mammalian cells have inferred aggregation indirectly by assessing levels of secreted Aβ peptide. In the present study we establish a mammalian cell system for the direct visualization of Aβ formation by expression of an Aβ(42)-EGFP (enhanced green fluorescent protein) fusion protein in the human embryonic kidney cell line T-REx293, and use this to identify both macromolecules and small molecules that reduce aggregation and associated cell toxicity. Thus a molecular shield protein AavLEA1 [Aphelenchus avenae LEA (late embryogenesis abundant) protein 1], which limits aggregation of proteins with expanded poly(Q) repeats, is also effective against Aβ(42)-EGFP when co-expressed in T-REx293 cells. A screen of polysaccharide and small organic molecules from medicinal plants and fungi reveals one candidate in each category, PS5 (polysaccharide 5) and ganoderic acid DM respectively, with activity against Aβ. Both PS5 and ganoderic acid DM probably promote Aβ aggregate clearance indirectly through the proteasome. The model is therefore of value to study the effects of intracellular Aβ on cell physiology and to identify reagents that counteract those effects.  相似文献   

20.
CD24 is a cell surface, heavily glycosylated glycosylphosphatidylinositol-anchored mucin-like protein that is overexpressed in various human malignancies. To accurately analyze CD24 function and dissect its biological role in a defined genetic background, it is critical to tightly regulate its expression and be able to turn it on/off in a restricted environment and at a specific time. The tetracycline-induced expression system is most promising as it exhibits such regulation, lack of pleiotropic effects, and high and rapid induction levels. To evaluate the oncogenic and immunotherapeutic potential of CD24 by applying the Tet-On system, the human CD24 gene was cloned downstream to two tetracycline operator sequences, resulting in pCDNA4/TO-CD24, which was then transfected into tetracycline (Tet) repressor-expressing cells (293T-REx), allowing tight on/off regulation, thereby resulting in a very low background or leaky CD24 expression. Selected clones were chosen for further studies and characterized in vitro and in vivo, and several treatment modalities were examined. In addition, the role of CD24 in promoting cell proliferation and tumor growth was studied. The tetracycline-dependent system was successfully implemented. Tetracycline treatment induced CD24 expression in a dose- and time-dependent fashion, which was abrogated following treatment with anti-CD24 monoclonal antibodies (mAbs). CD24-induced expression led to an increased proliferation rate that was inhibited by mAb treatment. In vivo, significantly larger tumors were developed in tetracycline-fed mice. The CD24 Tet-On system is a good model to unravel the role and underlying CD24 pathogenesis in vivo. This valuable tool allows the successful study of novel treatment options, whose effectiveness depends on the CD24 expression level. This set of experiments supports CD24 oncogenic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号