首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Thirty-five honey-bee colonies, originally free fromVarroa jacobsoni (Oudemans) were monitored approximately every third week for the presence of the mite during 16 months following an initial introduction of five to eight adultVarroa females in early July. Investigations of hive debris detected the presence ofV. jacobsoni in 22 colonies (63%) within three months of the mite introduction. During the first winter period (October–April), mites were found in the hive debris of 13 colonies (37%). In terms of detectingVarroa during the summer in colonies with sealed brood, investigations of hive debris were more effective than sampling of brood. Brood sampling was more effective than sampling of live bees. In colonies without sealed brood, investigations of hive debris or of live bee samples seemed approximately equally efficient. The highest correlation between sampling methods was found between daily mite downfall and mites per live bee (r=0.81) in colonies with sealed brood. During the winter, investigations of dead bees and hive debris were approximately equally efficient in detectingVarroa.  相似文献   

2.
The development of an infestation by five to eight introduced adult females ofVarroa jacobsoni Oud. in 35 honey-bee (Apis mellifera L.) colonies was monitored for 16 months with no outside source of infestation. Calculations on the size of the mite populations were based on collection of debris, samples of bees and brood, and estimates of number of bees and broodcells during the summer. In the winter, only dead bees and debris were collected. Samples were taken at 3-week intervals. Data indicated that the mite population probably could increase more than 100 times within one summer, and more than ten times between years, in a climate with a brood-rearing period of less than five months. A large variation in mite population increase existed between colonies. The winter mortality of mites that die with the host or drop from the winter cluster has a large influence on the population dynamics of the mite. Data also indicated that the simple method of counting mites in hive debris is a useful parameter for monitoring the population development ofVarroa in colonies with hatching brood.  相似文献   

3.
A gene-enzyme analysis was carried out on the honeybee miteVarroa jacobsoni. By means of gel electrophoresis, 17 presumptive gene loci, belonging to 14 enzyme systems, were scored. Adult female mites were collected in 12 apiaries from European countries and in one apiary from Beijing (China). The populations analysed were monomorphic for all the loci considered, almost all the individuals being homozygous for the same alleles. The breeding system and stochastic mechanisms during the spread ofV. jacobsoni over the world may account for the uncommonly low level of genetic variability observed. The genetic identity found among the analysed samples suggests that taxonomic differentiation is absent even among mite populations living in the different honeybee races considered.This research was supported by the Institut Technique de l'Apiculture (ITAPI), Bures-Sur-Yvette, France.  相似文献   

4.
In Europe and North America honey bees cannot be kept without chemical treatments against Varroa destructor. Nevertheless, in Brazil an isolated population of Italian honey bees has been kept on an island since 1984 without treatment against this mite. The infestation rates in these colonies have decreased over the years. We looked for possible varroa-tolerance factors in six Italian honey bee colonies prepared with queens from this Brazilian island population, compared to six Carniolan colonies, both tested at the same site in Germany. One such factor was the percentage of damaged mites in the colony debris, which has been reported as an indicator of colony tolerance to varroa. A mean of 35.8% of the varroa mites collected from the bottoms of the Italian bee colonies were found damaged, among which 19.1% were still alive. A significantly greater proportion of damaged mites were found in the Carniolan bees (42.3%) and 22.5% were collected alive. The most frequent kind of damage found was damaged legs alone, affecting 47.4% of the mites collected from debris in Italian bees, which was similar to the amount found in Carniolan colonies (46%). The mean infestation rate by the varroa mite in the worker brood cells in the Italian bee colonies was 3.9% in June and 3.5% in July, and in drone brood cells it was 19.3% in June. In the Carniolan honey bee colonies the mean infestation rates in worker brood cells were 3.0 and 6.7%, respectively in the months of June and July and 19.7% in drone brood cells in June. In conclusion, the 'Varroa-tolerant' Italian honey bees introduced from Brazil produced lower percentages of damaged mites (Varroa destructor) in hive debris and had similar brood infestation rates when compared to 'susceptible' Carniolan bees in Germany. In spite of the apparent adaptation of this population of Italian bees in Brazil, we found no indication of superiority of these bees when we examined the proportions of damaged mites and the varroa-infestation rates, compared to Carniloan bees kept in the same apiary in Germany.  相似文献   

5.
Invasion behaviour of Varroa jacobsoni into honey bee brood cells was studied using an observation hive. The mites were carried close to a suitable brood cell by the bees. Subsequently, the mites moved from the bees to the rim of the cell, walked quickly inside, crawled between the larva and the cell wall, and moved onto the bottom of the cell. Varroa mites were never seen walking across the comb, and entering and leaving brood cells as has been described for Tropilaelaps clareae. Differences in invasion strategies between V. jacobsoni and T. clareae are discussed.  相似文献   

6.
Varroa mite free colonies of the honey bee Apis mellifera L. were artificially infested, with either parasitized bees or infested worker brood. Queens were kept in cages to provide broodless conditions during the experiment. Parasites that fell to the bottom of the hive were monitored at 3–4 days intervals for three months. An acaricide treatment was used to recover mites still alive after this time period. Survivorship at each interval was calculated and life table functions of the phoretic mite cohorts were obtained. Trends in survival of Varroa cohorts showed maximum lifespans ranging from 80 to 100 days. Life expectancy of these phoretic cohorts at the beginning of the experiment ranges between 19 to 41, with a mean of 31 days.  相似文献   

7.
Varroa jacobsoni Oudemans (Acari: Varroidae) was studied with respect to invasion into different types of honeybee,Apis mellifera L., brood cells. Different cell types were obtained by shortening and elongating of cells, grafting worker larvae into drone cells andvice versa. The type of cell strongly affected the number of mites per cell, and the attractive period of the cells to the mites. The type of cell also affected the distance from larva to cell rim preceding cell capping. When this distance was larger in comparison to control cells of the same age, the attractive period of the brood cells was shorter andvice versa. Since in all cell types the distance from larva to cell rim continuously decreased preceding cell capping, this negative correlation is in agreement with the hypothesis that there is a critical larva-rim distance under which brood cells are attractive to mites. Then, the length of the attractive period of brood cells depends on the moment this critical distance is reached. The distribution of mites over different cell types in turn results from differences in the attractive period.  相似文献   

8.
The present study was conducted to determine whether Varroa jacobsoni can transmit American foulbrood (AFB), caused by the bacterium Paenibacillus larvae to healthy colonies by the surface transport of spores. Five two-storey Langstroth colonies of Apis mellifera ligustica were infested by placing a sealed brood comb, with 10% Varroa prevalence, between the central brood combs of each colony. Two months later the colonies were inoculated with P. larvae by adding brood comb pieces with clinical signs of AFB (45±5 scales per colony). After 60 days the brood area was completely uncapped by means of dissecting needles and tweezers, separating the Varroa mites from the larvae and the collected mites were introduced at a rate of 51 per colony into four recipient hives placed in an isolated apiary. Twenty female Varroa specimens were separated at random and observed by SEM. Paenibacillus larvae spores were found on the dorsal shield surface and on idiosomal setae. All colonies died after 4–5 months due to a high incidence of varroosis. No clinical AFB symptoms or P. larvae spores were observed in microscopic preparations. It is concluded that Varroa jacobsoni does not transmit AFB from infected to healthy colonies; it does, however transport P. larvae spores on its surface.  相似文献   

9.
Six honey bee colonies hived in Langstroth nuclei were each artificially infested with 100 phoretic Varroa mites. Hive debris on bottom inserts was inspected every 3–4 days. The adult Varroa mites were compared with mounted specimens and catalogued into lightly pigmented and darkly pigmented females. After 4 months, an acaricide treatment was used to estimate the final mite population. Based on light and dark adult counts, we propose a balancing equation that follows the Varroa population increase at 7 day intervals and allows the calculation of experimental population growth rates. The calculated Varroa finite rate of increase is =1.021. Exponential and logistic growth models fitted to the balancing equation data gave R 2=0.986 and R 2=0.991, respectively. To develop a more precise model it would be necessary to follow the population growth beyond our experimental data.  相似文献   

10.
Here we explored the potential for host shift from honeybee, Apis mellifera, colonies to bumblebee, Bombus impatiens, colonies by the small hive beetle, a nest parasite/scavenger native to sub-Saharan Africa. We investigated small hive beetle host choice, bumblebee colony defence as well as individual defensive behaviour of honeybee and bumblebee workers. Our findings show that in its new range in North America, bumblebees are potential alternate hosts for the small hive beetle. We found that small hive beetles do invade bumblebee colonies and readily oviposit there. Honeybee colonies are not preferred over bumblebee colonies. But even though bumblebees lack a co-evolutionary history with the small hive beetle, they are able to defend their colonies against this nest intruder by removal of beetle eggs and larvae and stinging of the latter. Hence, the observed behavioural mechanisms must be part of a generalistic defence system suitable for defence against multiple attackers. Nevertheless, there are quantitative (worker force) and qualitative differences (hygienic behaviour) between A. mellifera and B. impatiens. Received 16 July 2007; revised 16 January 2008; accepted 17 January 2008.  相似文献   

11.
Varroa jacobsoni (Acari: Varroidae) is more than one species   总被引:5,自引:0,他引:5  
Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia–Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study.Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas.Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.  相似文献   

12.
Reproduction ofVarroa jacobsoni Oudemans (Acari: Varroidae) and the number ofVarroa mites that were found dead on the bottom board of the hive, were studied in relation to the period the mites spent on adult honey bees,Apis mellifera L. (Hymenoptera: Apidae), prior to invasion into brood cells. The maximum period on adult bees was 23 days. To introduce mites, combs with emerging worker brood, heavily infested with mites, were placed into a colony and removed the next day. At the beginning of the first day following emergence from brood cells, 18% of the mites introduced into the colony was found on the bottom of the hive. Part of these mites may already have died inside the capped brood cells, and then fallen down after cleaning of cells by the bees. At the second and third day following emergence, respectively 4% and 2% of the mites on adult bees at the previous day was recovered on the bottom, whereas from the fourth day on only 0.6% of the mites on adult bees was recovered on the bottom per day. After invasion into brood cells, 8–12% of the mites did not produce any offspring. Of the mites that did reproduce, the total number of offspring was 4.0–4.4 per mite during one reproductive cycle, part of which may reach maturity resulting in 1.2–1.3 viable daughters, and 8–10% of the mites produced only male offspring. Reproduction was independent of the period the mites had spent on adult bees prior to invasion into brood cells.  相似文献   

13.
Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide.  相似文献   

14.
The proportion of Varroa jacobsoni Oudemans that were alive and mobile when they fell from honey bees, Apis mellifera L., in hives was measured during a 20-wk period to determine the potential use of systems that prevent these mites from returning to the bees. Traps designed to discriminate between the live, fallen mites and those that are dead or immobile were used on hive bottom boards. A large fraction of the fallen mites was alive when acaricide was not in use and also when fluvalinate or coumaphos treatments were in the hives. The live proportion of mitefall increased during very hot weather. The proportion of mitefall that was alive was higher at the rear and sides of the hive compared with that falling from center frames near the hive entrance. More sclerotized than callow mites were alive when they fell. A screen-covered trap that covers the entire hive bottom board requires a sticky barrier to retain all live mites. This trap or another method that prevents fallen, viable mites from returning to the hive is recommended as a part of an integrated control program. It also may slow the development of acaricide resistance in V. jacobsoni and allow the substitution of less hazardous chemicals for the acaricides currently in use.  相似文献   

15.
A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 1010 viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.  相似文献   

16.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Invasion ofVarroa mites into honeybee brood cells was studied in an observation hive, using combs with cell openings at one side only. The cell bottoms had been replaced by a transparent sheet, through which mites were clearly visible after invasion into a cell. Mites invaded worker cells from 15–20 h preceding cell capping, whereas they invaded drone cells from 40–50 h preceding capping. The larger number of mites generally found in drone cells, when compared to worker cells, may be partly due to the longer period of mite invasion into drone brood.  相似文献   

19.
The response of Asian honeybee (Apis cerana Fabr.) colonies toward the introduced worker brood of the European honeybee (Apis mellifera L.) infested with the parasitic mite Varroa jacobsoni Oudemans was investigated. When no mites were present, 40% of the healthy open brood and 3% of the healthy capped brood of the European honeybees were rejected by the Asian honeybee colonies. When the brood was infested, brood rejection was significantly higher for open (P < 0.05) and capped broods (P < 0.01). The brood removal activity decreased with time. The quantity of brood removed was also correlated with mite infestation level for open (r2 = 0.933) and sealed broods (r2 = 0.918). The feasibility of using heterospecific colonies to control Varroa mite is unclear and is discussed from behavioral and ecological points of view.  相似文献   

20.
It is claimed that Perizin, a pesticide to control the mite Varroa jacobsoni, acts systemically and is distributed by trophallaxis of the bees. We studied the role of trophallactic interactions in the distribution of coumaphos, the active ingredient, among the colony members and whether coumaphos can reach all mites by systemic activity. Colonies were divided into three compartments by a screen, one receiving a Perizin treatment by sprinkling, the others receiving no Perizin. In this way it was possible to trace the amount of coumaphos transferred between bees through the screen from the treated part to the untreated one by trophallaxis. After different periods of time the number of fallen mites was counted and the amount of coumaphos in bees was determined for all hive compartments. We found that trophallactic interactions are of minor importance in the distribution of Perizin between the two compartments. The recommended method of sprinkling Perizin over the bees was shown to be very inefficient; only 24% of the applied amount reaches the alimentary canal of the bees; the rest must therefore remain at other places: on the outside of the bees, in the combs and on the hive-parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号