首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The late-flowering, vernalization-responsive habit of many Arabidopsis ecotypes is mediated predominantly through repression of the floral programme by the FLOWERING LOCUS C (FLC) gene. To better understand this repressive mechanism, we have taken a genetic approach to identify novel genes that positively regulate FLC expression. We identified recessive mutations in a gene designated VERNALIZATION INDEPENDENCE 4 (VIP4), that confer early flowering and loss of FLC expression in the absence of cold. We cloned the VIP4 gene and found that it encodes a highly hydrophilic protein with similarity to proteins from yeasts, Drosophila, and Caenorhabditis elegans. Consistent with a proposed role as a direct activator of FLC, VIP4 is expressed throughout the plant in a pattern similar to that of FLC. However, unlike FLC, VIP4 RNA expression is not down-regulated in vernalized plants, suggesting that VIP4 is probably not sufficient to activate FLC, and that VIP4 is probably not directly involved in a vernalization mechanism. Epistasis analysis suggests that VIP4 could act in a separate pathway from previously identified FLC regulators, including FRIGIDA and the autonomous flowering promotion pathway gene LUMINIDEPENDENS. Mutants lacking detectable VIP4 expression flower earlier than FLC null mutants, suggesting that VIP4 regulates flowering-time genes in addition to FLC. Floral morphology is also disrupted in vip4 mutants; thus, VIP4 has multiple roles in development.  相似文献   

2.
3.
The timing of flowering is important for the reproductive success of plants. Here we describe the identification and characterization of a new MADS-box gene, FLOWERING LOCUS M (FLM), which is involved in the transition from vegetative to reproductive development. FLM is similar in amino-acid sequence to FLC, another MADS-box gene involved in flowering-time control. flm mutants are early flowering in both inductive and non-inductive photoperiods, and flowering time is sensitive to FLM dosage. FLM overexpression produces late-flowering plants. Thus FLM acts as an inhibitor of flowering. FLM is expressed in areas of cell division such as root and shoot apical regions and leaf primordia.  相似文献   

4.
EARLY FLOWERING 5 (ELF5) is a single-copy gene involved in flowering time regulation in Arabidopsis. ELF5 encodes a nuclear-targeted protein that is related to the human nuclear protein containing a WW domain (Npw)38-binding protein (NpwBP). Lesions in ELF5 cause early flowering in both long days and short days. elf5 mutations partially suppress the late flowering of both autonomous-pathway mutants and FRIGIDA (FRI)-containing lines by reducing the expression of FLOWERING LOCUS C (FLC), a floral repressor upon which many of the flowering pathways converge. elf5 mutations also partially suppress photoperiod-pathway mutants, and this, along with the ability of elf5 mutations to cause early flowering in short days, indicates that ELF5 also affects flowering independently of FLC.  相似文献   

5.
Mutations in tcl-2 cause defects in the specification of the fates of the descendants of the TL and TR blast cells, whose polarity is regulated by lin-44/Wnt and lin-17/frizzled, during Caenorhabditis elegans development. In wild-type animals, POP-1/TCF/LEF, is asymmetrically distributed to the T cell daughters, resulting in a higher level of POP-1 in the nucleus of the anterior daughter. The POP-1 asymmetric distribution is controlled by lin-44 and lin-17. However, in tcl-2 mutants, POP-1 is equally distributed to T cell daughters as is observed in lin-17 mutants, indicating that, like lin-17, tcl-2 functions upstream of pop-1. In addition, tcl-2 mutations cause defects in the development of the gonad and the specification of fate of the posterior daughter of the P12 cell, both of which are controlled by the Wnt pathway. Double mutant analyses indicate that tcl-2 can act synergistically with the Wnt pathway to control gonad development as well as P12 descendant cell fate specification. tcl-2 encodes a novel protein. A functional tcl-2::gfp construct was weakly expressed in the nuclei of the T cell and its descendants. Our results suggest that tcl-2 functions with Wnt pathways to control T cell fate specification, gonad development, and P12 cell fate specification.  相似文献   

6.
7.
8.
We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.  相似文献   

9.
10.
Here we report the identification of BET3, a new member of a group of interacting genes whose products have been implicated in the targeting and fusion of endoplasmic reticulum (ER) to Golgi transport vesicles with their acceptor compartment. A temperature-sensitive mutant in bet3-1 was isolated in a synthetic lethal screen designed to identify new genes whose products may interact with BET1, a type II integral membrane protein that is required for ER to Golgi transport. At 37 degrees C, bet3-1 fails to transport invertase, alpha-factor, and carboxypeptidase Y from the ER to the Golgi complex. As a consequence, this mutant accumulates dilated ER and small vesicles. The SNARE complex, a docking/fusion complex, fails to form in this mutant. Furthermore, BET3 encodes an essential 22-kDa hydrophilic protein that is conserved in evolution, which is not a component of this complex. These findings support the hypothesis that Bet3p may act before the assembly of the SNARE complex.  相似文献   

11.
We have isolated a cDNA that encodes a novel member of the Y-box binding protein family, termed as RYB-a (Rat Y-box Binding protein-a). RYB-a is a 31 kDa protein that contains a conserved cold-shock domain and an amino acid alignment similar to those of charge zipper proteins. Expression of RYB-a mRNA was highly abundant in the skeletal muscle, spleen, and fetal liver. The expression is very low in new-born and adult livers, suggesting its expression is under developmental regulation. In addition, the expression of RYB-a mRNA was induced in the liver during regeneration and by stimulation of quiescent fibroblast cells with serum. Induction in the fibroblasts was inhibited by treating the cell with a specific tyrosine kinase inhibitor, genistein or by detachment of cell-adhesion. Since both treatments are known to inhibit G1 cells to enter S phase, RYB-a gene is thought to be a member of growth-inducible genes.  相似文献   

12.
13.
14.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.  相似文献   

15.
Poduska B  Humphrey T  Redweik A  Grbić V 《Genetics》2003,163(4):1457-1465
The genetic changes underlying the diversification of plant forms represent a key question in understanding plant macroevolution. To understand the mechanisms leading to novel plant morphologies we investigated the Sy-0 ecotype of Arabidopsis that forms an enlarged basal rosette of leaves, develops aerial rosettes in the axils of cauline leaves, and exhibits inflorescence and floral reversion. Here we show that this heterochronic shift in reproductive development of all shoot meristems requires interaction between dominant alleles at AERIAL ROSETTE 1 (ART1), FRIGIDA (FRI), and FLOWERING LOCUS C (FLC) loci. ART1 is a new flowering gene that maps 14 cM proximal to FLC on chromosome V. ART1 activates FLC expression through a novel flowering pathway that is independent of FRI and independent of the autonomous and vernalization pathways. Synergistic activation of the floral repressor FLC by ART1 and FRI is required for delayed onset of reproductive development of all shoot meristems, leading to the Sy-0 phenotype. These results demonstrate that modulation in flowering-time genes is one of the mechanisms leading to morphological novelties.  相似文献   

16.
17.
The timing of flowering initiation depends strongly on the environment, a property termed as the plasticity of flowering. Such plasticity determines the adaptive potential of plants because it provides phenotypic buffer against environmental changes, and its natural variation contributes to evolutionary adaptation. We addressed the genetic mechanisms of the natural variation for this plasticity in Arabidopsis thaliana by analysing a population of recombinant inbred lines derived from Don‐0 and Ler accessions collected from distinct climates. Quantitative trait locus (QTL) mapping in four environmental conditions differing in photoperiod, vernalization treatment and ambient temperature detected the folllowing: (i) FLOWERING LOCUS C (FLC) as a large effect QTL affecting flowering time differentially in all environments; (ii) numerous QTL displaying smaller effects specifically in some conditions; and (iii) significant genetic interactions between FLC and other loci. Hence, the variation for the plasticity of flowering is determined by a combination of environmentally sensitive and specific QTL, and epistasis. Analysis of FLC from Don identified a new and more active allele likely caused by a cis‐regulatory deletion covering the non‐coding RNA COLDAIR. Further characterization of four FLC natural alleles showed different environmental and genetic interactions. Thus, FLC appears as a major modulator of the natural variation for the plasticity of flowering to multiple environmental factors.  相似文献   

18.
Floral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by ectopic expression of the FLOWERING LOCUS T (FT) gene, a floral pathway integrator. Molecular cloning of TFL2 showed that it encodes a protein with homology to heterochromatin protein 1 (HP1) of animals and Swi6 of fission yeast. TFL2 protein localizes in subnuclear foci and expression of the TFL2 gene complemented yeast swi6(-) mutants. These results suggested that TFL2 might function as an HP1 in Arabidopsis: Gene expression analyses using DNA microarrays, however, did not show an increase in the expression of heterochromatin genes in tfl2 mutants but instead showed the upregulation of the floral homeotic genes APETALA3, PISTILLATA, AGAMOUS and SEPALLATA3. The pleiotropic phenotype of the tfl2 mutant could reflect the fact that TFL2 represses the expression of multiple genes. Our results demonstrate that despite its homology to HP1, TFL2 is involved in the repression of specific euchromatin genes and not heterochromatin genes in Arabidopsis.  相似文献   

19.
Wang B  Jin SH  Hu HQ  Sun YG  Wang YW  Han P  Hou BK 《The New phytologist》2012,194(3):666-675
? Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases. ? Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches. ? The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus. ? Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.  相似文献   

20.
Jiang D  Wang Y  Wang Y  He Y 《PloS one》2008,3(10):e3404
Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号