首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bailey  J.S.  Cushnahan  A.  Beattie  J.A.M. 《Plant and Soil》1997,197(1):137-147
A DRIS model for perennial ryegrass, based on data collected from a glasshouse experiment, was used to diagnose the nutrient sufficiency status of perennial ryegrass swards growing in field situations. Initially, DRIS overestimated the N and P status of these swards and underestimated their S status. However, by calibrating the model outputs on the basis of actual sward dry matter yield responses to specific fertiliser inputs, correction factors were evaluated, and the nutrient indices modified to reflect the nutritional status of swards in field situations.Modified DRIS diagnoses of the N, P, K and S status of swards were compared with those made using the critical value approach. DRIS proved to be as reliable as the critical value approach at diagnosing N deficiency (both approaches having reliability scorings of 90%), but was superior to the latter at diagnosing P, K and S deficiencies, having reliability scorings of 100% (P), 90% (K) and 70% (S), compared with scorings of only 0% (P), 80% (K) and 30% (S), for the critical value approach.  相似文献   

2.
Tomato is an important field crop, and nutritional imbalances frequently reduce its yield. Diagnosis and Recommendation Integrated System (DRIS), uses ratios for nutrient deficiency diagnosis instead of absolute concentration in plant tests. In this study, local DRIS norms for the field tomatoes were established and the nutrient(s) limiting tomatoes yield were determined. Tomato leaves were analyzed for nutrients, to identify nutritional status using the DRIS approach. One hundred tomatoes fields were selected from Chatter Plain Khyber Pakhtunkhwa and the Sheikupura Punjab Pakistan. The first fully matured leaf was sampled, rinsed, dried and ground for analyzing P, K, Ca, Mg, Cu, Fe, Mn and Zn using an Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP AES). Plant tissue N and S were measured by the combustion method. The tomatoes yields were recorded at each location. The data were divided into high-yielding (≥3.79 kg/10 plant) and low-yielding (<3.79 kg/10 plant) populations and norms were computed using standard DRIS procedures. High-yielding plant population had a statistically greater mean S and Fe than the low-yielding population. The average balance index, the sum of functions, for S and Fe were −11.04 and −5.17 which reflected deficiency of S and Fe. Plant nutrients norms established may optimize plant nutrition in field tomatoes for high yield.  相似文献   

3.
Bailey  J. S.  Dils  R. A.  Foy  R. H.  Patterson  D. 《Plant and Soil》2000,222(1-2):255-262
Perennial ryegrass is the most important species of forage grass in both continental Europe and the British Isles. An investigation was carried out to see if the DRIS model developed for this species was able to diagnose crop nutrient sufficiency status, at harvest time, using data for herbage samples collected 2 weeks earlier. A re-evaluation of P fertiliser recommendations for silage, based on the ‘Olsen’ soil P-test, was then carried out using DRIS diagnoses of P sufficiency status as the criteria with which to judge if swards had been adequately, under, or over-supplied with fertiliser P. The results confirmed that reliable (DRIS) diagnoses of N, P, K and S sufficiency statuses of silage swards may be made from herbage clippings taken 2 weeks prior to harvest. Current P recommendations for silage swards proved to be excessive for non-basaltic sandy textured soils at first cut, correct for this group of soils at second cut, and more or less correct for non-basaltic clay textured soils at both cuts. For basaltic soils, however, P recommendations at both cuts appeared to be unrelated to plant P status, and it was concluded that the ‘Olsen’ soil P-test had provided an erroneous assessment of plant available P in these exceptionally iron-rich soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Low soil fertility is one of the main constraints to crop production in the West African savanna. However, the response of major cereals to fertilizer applications is often far below the potential yields. Low fertilizer efficiency, inadequacy of current fertilizer recommendations, and the ignorance of nutrients other than N, P, and K may limit crop production. Nutrient limitations to maize production were identified in on-farm trials in Togo and in several long-term experiments in Nigeria and Benin. Maize ear leaf samples were analyzed for macro and micro-nutrients, and the Diagnosis and Recommendation Integrated Systems (DRIS) was applied to rank nutrients according to their degree of limitation to maize. In the on-farm trials, both yield and DRIS results indicated that, when N is supplied, P limited maize production in all fields, reducing yields by 31% on average. Sulfur was limiting in 81% of the fields and was responsible for an average yield reduction of 20%. In the long-term experiments where N, P, and K had been annually applied, Ca and Mg indices were strongly negative, indicative of deficiency. Zn indices were negative in all trials. Despite N-fertilizer additions, N indices remained negative in some of the long-term experiments, pointing to low efficiency of applied fertilizers. There was a direct link between DRIS indices and the management imposed in the different experiments, indicating that DRIS is a useful approach to reveal nutrient deficiencies or imbalances in maize in the region.  相似文献   

5.
Critical leaf nutrient concentrations have often been used to diagnose the nutritional causes of crop underperformance. Unfortunately, these diagnostic criteria are not available for mature, tuber-bearing sweet potato plants (the word ‘tuber’ being used to describe a swollen root rather than a swollen stem). The Diagnosis and Recommendation Integrated System (DRIS), however, provides a reliable means of linking leaf nutrient concentrations to the yield of sweet potato tubers, and may be developed for this crop using existing data from regional crop surveys. In the present study, tuber yield and leaf nutrient concentration data from a survey of sweet potato gardens conducted in the Papua New Guinea (PNG) highlands in 2005 were used to establish DRIS N, P, K, and S norms and statistical parameters for sweet potato. Although the database was relatively small, the norms derived for nutrient ratios of key biological significance, i.e. N/S and K/N, were within the expected narrow ranges for higher plants, giving credibility to both the database and the DRIS model. Data from future surveys and field trials may subsequently be used to enlarge the database allowing the refinement of model parameters and hopefully an expansion of diagnostic scope to include other macro and micro-nutrients. As it stands, though, this preliminary DRIS model for sweet potato is possibly the best diagnostic tool currently available for evaluating the N, P, K and S statuses of sweet potato crops in the pacific region.  相似文献   

6.
Regrowth after cutting and the distribution of nitrogen (N),phosphorus (P) and potassium (K) in different plant organs ofwhite clover and perennial ryegrass growing in pure or mixedswards were investigated under field conditions in a soil witha low-to-moderate availability of P and K. In all treatments,white clover constituted more than 70% of the above-ground biomassin the mixed swards. The petioles were the dominant pool ofdry matter throughout regrowth and contained the greatest amountsof N, P and K. Increased supply of P and K increased the growthof ryegrass, but not that of white clover in the mixed swards.The increased competition from ryegrass led to a decline inthe yield of white clover laminae as well as in the N contentper unit of dry matter in laminae, petioles and stolons. TheP content of all white clover organs also declined followingP application to the mixed swards, whereas K application increasedtheir K contents. In the pure swards of ryegrass and white clover,yields and contents of N, P and K in the dry matter were eithernot affected or increased following P and K application. Itwas concluded that commonly-used defoliation heights may remove80% or more of the nutrient and dry matter pools located inthe petioles but the remaining quantities of dry matter andnutrients in the petioles will normally exceed the correspondingquantities in the stolons. Copyright 2001 Annals of Botany Company Coexistence, competition, phosphorus, potassium, regrowth, ryegrass, white clover  相似文献   

7.
The leaf macroelement profile of fruiting shoots of persimmon was characterized by a modified diagnostic and recommendation integrated system (DRIS), using SLW as a primary determinant of leaf mineral content. Leaf N, P, Ca, and Mg content was positively and linearly correlated with SLW when expressed on leaf area basis (g mm–2). Potassium had a negative and higher correlation to SLW when expressed on %DW basis. Mineral ratios relevant for the DRIS analysis were calculated using all four possible combinations of Area (A) and Weight (W) expressions (A/A, A/W, W/A and W/W) and correlated with leaf SLW. The particular expressions chosen for the DRIS analysis were based on their highest correlation to SLW and included N/K, P/K and Ca/Mg, based on the A/W expression of the respective nutrients and the reciprocal expression (W/A) for all other ratios. Derivation of DRIS norms were based on the mineral profile of highly exposed shoots (SLW of 15.0±0.3 mg cm–2). Calculated indices of gradually less exposed shoots (SLW of 3.8–18.9 mg cm–2) revealed a strong exponential imbalance of N, K and P (increasingly positive) vs Ca and Mg (increasingly negative). The calculated Nutritional Imbalance Index (NII) value of leaves decreased exponentially as shoot leaf SLW decreased. The modified DRIS analysis detected successfully a distinct mineral profile of highly vigorous fruiting water shoots, as compared to regular fruiting shoots of comparable SLW.  相似文献   

8.
Hocking  Peter J. 《Annals of botany》1993,71(6):495-509
The seasonal dynamics of the accumulation, distribution andredistribution of dry matter and 12 mineral nutrients by a weedyspecies of gladiolus (Gladiolus caryophyllaceus) were studiedat Perth, Western Australia, where it has colonized the nutrient-poorsandy soils. Parent corms sprouted in autumn, and the plantshad completed their growth cycle by early summer. The maturereplacement corm had 15-25% of the plant's P, Ca, Na, Zn andCu, 5-15% of its K, N, Cl, Mg, S and dry matter, and < 5%of its Fe and Mn. Seeds had 26% of the plant's dry matter, 60%of its N and P, 21-33% of its S, Mg, Cu and K, 5-20% of itsFe, Mn and Zn, and < 5% of its Ca and Na. The mature vegetativeshoot had 47% of the plant's dry matter and over 40% of eachnutrient, except for N, P and Cu. Phosphorus, K and N were redistributedfrom the parent corm with over 85% efficiency, S, Mg, Zn andCu with 60-70% efficiency, but there was < 10% redistributionof Ca, Na, Cl, Fe and Mn. The efficiency of redistribution fromthe leafy shoot was over 70% for N and P, 29-52% for K, Mg andCu, 16-20% for S, Zn and Cl, but negligible for Ca, Na, Fe andMn. Redistribution from the shoot could have provided the replacementcorm and seeds with 53-98% of their Cu, Mg, N, P and K, and29-38% of their S, Zn and dry matter. Seeds contained over 60%of each nutrient in a capsule, except for Ca, Na and Fe. Redistributionfrom the capsule walls could have provided 13-19% of the P,Cu and Zn, and 3-7% of the N, K, Mg and dry matter accumulatedby seeds. Each plant produced an average of 520 seeds. Removalof flowers and buds at first anthesis resulted in a larger replacementcorm containing a greater quantity of most nutrients, indicatingcompetition between the replacement corm and seeds for nutrients.Redistribution from parent to replacement cormlets in the absenceof shoot and root development was high, with over 50% of thedry matter and each nutrient, except for Ca, being transferred.Concentration of nutrients were low in all organs of G. caryophyllaceus,especially the replacement corm. It was concluded that the effectiveredistribution of key nutrients, such as N and P, to reproductivestructures and tolerance of low internal concentrations of nutrientscontribute to the capacity of G. caryophyllaceus to colonizeand persist on infertile soils.Copyright 1993, 1999 AcademicPress Gladiolus caryophyllaceus, corm, distribution, dry matter, gladiolus, mineral nutrients, nutrient accumulation, nutrient redistribution, seasonal growth, weed  相似文献   

9.
C. C. Hole  A. Scaife 《Plant and Soil》1993,150(1):147-156
Critical plant concentrations for a reduction in relative growth rate to 90% of that of fully nourished plants were estimated by a novel method for several mineral nutrients. Carrot plants were grown from seed for 28 days in a range of nutrient solutions omitting N, P, K, Ca, S, Mg, Fe, B, Mn, Zn, Cu and Mo as separate treatments. All treatments except -Mn, -Zn, -Cu and -Mo resulted in effects on plant growth and the development of deficiency symptoms. Estimates of critical concentrations were based on a simple simulation model incorporating the principle of nutrient dilution with increasing plant weight and on mineral analysis of the plants. Parameters governing the shape of the relationship between fractional relative growth rate and plant nutrient concentration were altered until the model predicted the observed final mean dry weight of deficient plants and time of divergence of this growth curve from that of fully nourished plants. Critical concentrations so obtained were higher than those previously reported for Ca, Fe, N and P in carrots and lower for K, Mg and S.  相似文献   

10.
Meerts  Pierre 《Plant and Soil》1997,189(2):257-265
In order to investigate broad patterns of variation of the foliar mineral nutrient concentrations of herbaceous plant communities in the ground layer of W Europe forests, correlations were examined between Ellenberg's indices (N-index: mineral nitrogen availability, R-index: pH, F-index: soil moisture and L-index: light intensity) and literature values of macronutrient concentrations for 84 forbs and 39 graminoid species. Significant, positive correlations were found between the R-index and the plants' concentration of Ca and K (forbs only) and between the N-index and the plants' concentration of K, P (forbs only) and N (forbs and graminoids). Multiple regressions showed that the N-index was the best predictor of the plants' concentration of N (forbs and graminoids), P (forbs) and Ca (graminoids) and the R-index of the plants' concentration of Ca and K (forbs). The mineral nutrient concentrations of graminoids were lower and less strongly correlated with Ellenberg's indices than those of forbs. It is argued that the mineral nutrient concentrations in the plants match the availability of mineral nutrients in the soil for N, P (N-index) and Ca (R-index), but not for K and Mg. Significant, positive correlations were found between potential relative growth rate and the concentration of some elements (N, P, K and Ca in forbs, Ca and Mg in graminoids). This suggests that the increase in the concentration of these elements in plants along fertility gradients is due, at least partly, to genetically controlled alterations of leaf anatomy associated with increasing potential relative growth rate.  相似文献   

11.

Background and Aims

Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region.

Methods

Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn).

Key Results

Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (–16·1 %), Ca (–44·0 %), Cu (–14·5 %), Fe (–205·5 %), Mn (–72·5 %), Mo (–35·6 %) and Zn (–184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively.

Conclusions

The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.  相似文献   

12.
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus (P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N], and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient (P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense. Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation or temperature.  相似文献   

13.

Testing and developing nutrient diagnosis methods, which can result in the optimum production of fruits, is of significance. The nutritional balance and requirements of almond (Prunus sp.) orchards, in the city of Saman (province of Chaharmahal and Bakhtiari, Iran, one of the biggest producers of almond in the country), were investigated using the methods of diagnosis and recommendation integrated system (DRIS) and deviation from optimum percentage (DOP) in a two-year research. Using 36 gardens along the Zayandehrud River in a 60-km distance, soil physical and chemical properties, as well as leaf micro- and macro-nutrient contents were determined. Similar plant samples (leaf + petiole) in terms of age, genotype and rootstock were collected from the unfruitful trees. The most deficient nutrients including S, Cu, Zn and Mn were indicated by the DRIS and DOP methods. However, according to the DRIS method Mg, and according to the DOP method N, K and Mg were determined as the most excessive macronutrients. Interestingly, both methods indicated Mo as the most excessive micronutrient. The balance indexes of different nutrients for different orchards indicated that the nutritional balances of the orchards from the highest to the least deficiency are according to the following order Cu > S > Zn > Mn > Cl > P > Ca > Mg > B > N > K > Fe > Mo. Such results indicate the precisions and some similarities between the two methods. However, the two methods were compared using SAS Proc GLM, Proc REG, and Proc NLIN. The analyses indicated that the two methods were significantly different and the DOP method (significant model) indicated higher correlation with the results. Accordingly, the DOP method may be a more accurate method of estimating almond yield as affected by the concentration of different nutrients. It is possible to determine the deficiency, balance and excessiveness of nutrients in almond orchards using the DRIS and DOP methods, which is of economic and environmental significance, worldwide.

  相似文献   

14.
S. C. Castle  J. C. Neff 《Oecologia》2013,173(4):1551-1561
The importance of rock-derived mineral nutrients (P, K, Mn, Mg, and Ca) in plant physiological function is well established. However, one important and relatively unexplored question is whether or not the same rules of plant nutrient use efficiency apply to these essential elements even if they are not limiting to primary production. We examined conifer growth and nutrient use dynamics across sites with contrasting geologies (sedimentary and volcanic) that vary in both rock-derived mineral nutrient and N availability. Differences in bedrock geochemistry generally corresponded to differences in available soil nutrients, such that the volcanic site tended to have greater available nutrients. Foliar nutrient concentrations reflected both differences in bedrock chemistry and indices of available soil nutrients for P, K, and Mn. Aboveground biomass production did not follow expected patterns and was greater for trees growing on low nutrient sites, but only with respect to the annual woody increment. Fine litter production did not differ between sites. Finally, we found evidence for trade-offs between two commonly examined components of nutrient use efficiency (NUE): nutrient productivity (A n) and mean residence time of nutrients. However, we did not find evidence for higher plant NUE in soils with lower nutrient availability for N or rock-derived nutrients.  相似文献   

15.
Plant species diversity affects plant nutrient pools, however, previous studies have not considered plant nutrient concentrations and biomass simultaneously. In this study, we conducted an experimental system with 90 microcosms simulating constructed wetlands (CWs). Four species were selected to set up a plant species richness gradient (1, 2, 3, 4 species) and fifteen species compositions. The plant biomass, plant N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations and pools were analyzed. Results showed that, (1) plant species richness increased plant biomass, and the presence of Oenanthe javanicae increased while the presence of Reineckia carnea decreased plant biomass; (2) plant species richness only increased plant K and Mg concentrations of the communities and plant Mg concentration of the species, and the presence of O. Javanica increased while the presence of R. Japonicus decreased plant N and P concentrations of the communities; (3) plant species richness increased plant N, P, K, Ca, and Mg pools, and the presence of O. Javanica increased while the presence of R. Carnea decreased plant N, P, K, Ca and Mg pools; (4) the four-species mixture produced more biomass and nutrient pools than the corresponding highest specific species monocultures. In case the plant uptake can remove nutrients from CWs through harvesting, the results suggest that both nutrient concentrations and biomass must be considered when evaluating the accumulation of nutrients. Assembling plant communities with high species richness (four species) or certain species (such as O. Javanica) is recommended to remove more nutrients from CWs through harvesting.  相似文献   

16.
林地覆盖经营对雷竹鞭根主要养分内循环的影响   总被引:1,自引:0,他引:1  
陈珊  陈双林  郭子武 《生态学报》2015,35(17):5788-5796
为了给林地覆盖经营雷竹(Phyllostachys violascens)林可持续经营提供理论参考,探讨了休养式覆盖经营(覆盖3a后休养3a)、长期覆盖经营(覆盖6a)和不覆盖雷竹林(CK)2年生壮龄竹鞭及其1级、2级根N、P、K、Mg、Ca、Fe浓度和养分迁移、内循环率的差异。结果表明:不同覆盖经营年限雷竹林N、P、K、Mg、Ca和Fe浓度总体上1级根显著高于2级根。1级根和2级根中均存在N、P、K、Mg的养分内循环,且1级根养分内循环率大于2级根,Fe、Ca内循环不明显。N、P、K、Mg养分浓度与养分迁移速率随时间的推延,1级根为持续降低,2级根为先升高后降低。与不覆盖雷竹林相比,休养式林地覆盖经营总体上提高了1级、2级根的N、P、K、Ca的浓度和P、K、Mg的迁移速率、N、P、K的迁移量、P、K的养分内循环率以及1级根Mg的浓度和迁移量、2级根N的迁移速率和Mg的内循环率;长期林地覆盖经营虽提高了雷竹1级根N、K的浓度和N的迁移量及2级根N的浓度和内循环率,但总体上降低了1级根P、K、Mg和2级根N、P、Mg的迁移量与1级、2级根P、Mg的迁移速率及P、K、Mg的养分内循环率。研究表明:雷竹林鞭根中存在明显的养分内循环,且1级根对养分内循环的贡献较大。休养式林地覆盖经营利于雷竹林对养分的循环利用,而长期覆盖经营阻碍了根系对养分的平衡吸收,减弱了根系养分的内循环,不利于雷竹林的生长更新。  相似文献   

17.
Ma Q  Yu WT  Zhou H  Xu YG  Chen JN  Chen GJ  Liu SY  Deng L 《应用生态学报》2010,21(8):1933-1939
采用田间定位试验的方法,研究了追施氮肥对2年生桉树各器官生物量积累及养分浓度与贮量的影响.结果表明:与对照相比,追施氮肥使桉树生物量增加24.2%,其中树枝增幅最高,为38.2%,树叶最少.追施氮肥显著促进了桉树对养分的吸收,其增幅顺序为PKNMgCaSi;叶片中N、P、Mg、Si含量最高,K在树干中的贮量最大,树枝部位的养分浓度与贮量增加最为显著.桉树N、P、K养分以内循环为主,叶片凋落前分别有73.8%、79.1%和72.9%的N、P、K养分被转移到植株体内,其外循环量仅为全树贮量的14.8%、7.7%和8.6%;Ca、Mg、Si养分则以外循环方式为主,其中Ca最明显,树叶中89.2%的Ca随叶片凋落,其外循环通量占全树Ca总贮量的25.9%.  相似文献   

18.
Nilsson  Lars-Owe  Wiklund  Karin 《Plant and Soil》1995,168(1):437-446
The nutrient balance and above ground accumulation of macro nutrients, except for N, resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden is presented. The site and the productivity of the stand is typical for the area. Treatment include irrigation (I); artificial drought (D1); ammonium sulphate addition (NS); N-free-fertilisation (V) and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingestad principle (IF). At start of the experiment the stand contained 86.5 t dry mass, 342 kg N, 33 kg P, 142 kg K, 172 kg Ca, 36 kg Mg and 34 kg S ha-1. Enhanced accumulation vs control of S was seen in the NS and IF treatments. In the V and IF treatments P accumulation was 7–9 times higher and Ca and Mg, 2–4 times higher compared to the control. K accumulation was increased for the IF treatment. B that accumulated in the needles was decreased in the NS and D1 treatments and increased in the IF and V treatments, as compared to the control. The gross accumulation of nutrients relative to the amounts added was in the IF and V treatments 56 and 47% for P, 40 and 64% for K, 40 and 24% for Mg and, 22 and 8% for S, respectively. We conclude that application with N-free fertilizer, Skogvital (V), including macro nutrients and essential micro nutrients, results in a fast and efficient accumulation above ground of P, K, Ca, Mg and B. The treatment is efficient when aiming at restoring nutrient imbalances in Norway spruce. Application with ammonium sulphate at a rate of 5–6 times higher than the current deposition of N and S did not lead to decreased accumulation above ground of any of the macro nutrients P, K, Ca or Mg. The accumulation of B, however, was significantly reduced. Results from this and other studies indicate that today, N alone, generally is a growth limiting nutrient for Norway spruce in Southern Sweden.  相似文献   

19.
Elevated CO2 is expected to lower plant nutrient concentrations via carbohydrate dilution and increased nutrient use efficiency. Elevated CO2 consistently lowers plant foliar nitrogen, but there is no consensus on CO2 effects across the range of plant nutrients. We used meta-analysis to quantify elevated CO2 effects on leaf, stem, root, and seed concentrations of B, Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn among four plant functional groups and two levels of N fertilization. CO2 effects on plant nutrient concentration depended on the nutrient, plant group, tissue, and N status. CO2 reduced B, Cu, Fe, and Mg, but increased Mn concentration in the leaves of N2 fixers. Elevated CO2 increased Cu, Fe, and Zn, but lowered Mn concentration in grass leaves. Tree leaf responses were strongly related to N status: CO2 significantly decreased Cu, Fe, Mg, and S at high N, but only Fe at low N. Elevated CO2 decreased Mg and Zn in crop leaves grown with high N, and Mn at low N. Nutrient concentrations in crop roots were not affected by CO2 enrichment, but CO2 decreased Ca, K, Mg and P in tree roots. Crop seeds had lower S under elevated CO2. We also tested the validity of a “dilution model.” CO2 reduced the concentration of plant nutrients 6.6% across nutrients and plant groups, but the reduction is less than expected (18.4%) from carbohydrate accumulation alone. We found that elevated CO2 impacts plant nutrient status differently among the nutrient elements, plant functional groups, and among plant tissues. Our synthesis suggests that differences between plant groups and plant organs, N status, and differences in nutrient chemistry in soils preclude a universal hypothesis strictly related to carbohydrate dilution regarding plant nutrient response to elevated CO2.  相似文献   

20.
Summary Changes in soil and plant nutrient conditions were evaluated following various burn and clip treatments in a longleaf pine-wiregrass savanna in Bladen Co., N.C., USA. Ground fires were found to add substantial quantities of N, P, K, Ca, and Mg to the soil, though not necessarily in forms immediately available to plants. Less than 1% of the total nitrogen in the charred residue (ash) is present as nitrate or ammonium. Considerable quantities of all nutrients examined were lost to the atmosphere during burning. Green leaf tissue in recently burned areas was consistently higher in N, P, K, Ca, and Mg compared to unburned areas. Howerver, when compared to similar tissues from clipped plots, burned area tissues were significantly higher in N, Ca, and Mg only. Data presented here suggest that tissue age significantly affects nutrient content and must be considered in any analysis of tissue nutrient content following burning. Within 4–6 months following fire, burned-area tissue nutrient content decreases to concentrations found in the unburned area. Burning resulted in initial enrichment of available soil nutrients including PO4, K+, Ca++, and Mg++, however, NO3 -, and NH4 + concentrations in burned soil were not significantly different from unbruned soil. Soil and plant nutrient changes in an area burned two years in succession indicate that repeated burning may diminish nutrient availability. Plant response to various nutrient enrichment treatments of the soil indicated that nitrogen is limiting growth in both burned and unburned soils and that burning may alter some factors other than nutrients which may retard plant growth in unburned areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号