首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Single nucleotide polymorphism (SNP) genotyping assays normally give rise to certain percents of no-calls; the problem becomes severe when the target organisms, such as cattle, do not have a high resolution genomic sequence. Missing SNP genotypes, when related to target traits, would confound downstream data analyses such as genome-wide association studies (GWAS). Existing methods for recovering the missing values are successful to some extent --- either accurate but not fast enough or fast but not accurate enough. RESULTS: To a target missing genotype, we take only the SNP loci within a genetic distance vicinity and only the samples within a similarity vicinity into our local imputation process. For missing genotype imputation, the comparative performance evaluations through extensive simulation studies using real human and cattle genotype datasets demonstrated that our nearest neighbor based local imputation method was one of the most efficient methods, and outperformed existing methods except the time-consuming fastPHASE; for missing haplotype allele imputation, the comparative performance evaluations using real mouse haplotype datasets demonstrated that our method was not only one of the most efficient methods, but also one of the most accurate methods. CONCLUSIONS: Given that fastPHASE requires a long imputation time on medium to high density datasets, and that our nearest neighbor based local imputation method only performed slightly worse, yet better than all other methods, one might want to adopt our method as an alternative missing SNP genotype or missing haplotype allele imputation method.  相似文献   

2.

Background

Use of missing genotype imputations and haplotype reconstructions are valuable in genome-wide association studies (GWASs). By modeling the patterns of linkage disequilibrium in a reference panel, genotypes not directly measured in the study samples can be imputed and used for GWASs. Since millions of single nucleotide polymorphisms need to be imputed in a GWAS, faster methods for genotype imputation and haplotype reconstruction are required.

Results

We developed a program package for parallel computation of genotype imputation and haplotype reconstruction. Our program package, ParaHaplo 3.0, is intended for use in workstation clusters using the Intel Message Passing Interface. We compared the performance of ParaHaplo 3.0 on the Japanese in Tokyo, Japan and Han Chinese in Beijing, and Chinese in the HapMap dataset. A parallel version of ParaHaplo 3.0 can conduct genotype imputation 20 times faster than a non-parallel version of ParaHaplo.

Conclusions

ParaHaplo 3.0 is an invaluable tool for conducting haplotype-based GWASs. The need for faster genotype imputation and haplotype reconstruction using parallel computing will become increasingly important as the data sizes of such projects continue to increase. ParaHaplo executable binaries and program sources are available at http://en.sourceforge.jp/projects/parallelgwas/releases/.  相似文献   

3.
In genetic association studies, tests for Hardy-Weinberg proportions are often employed as a quality control checking procedure. Missing genotypes are typically discarded prior to testing. In this paper we show that inference for Hardy-Weinberg proportions can be biased when missing values are discarded. We propose to use multiple imputation of missing values in order to improve inference for Hardy-Weinberg proportions. For imputation we employ a multinomial logit model that uses information from allele intensities and/or neighbouring markers. Analysis of an empirical data set of single nucleotide polymorphisms possibly related to colon cancer reveals that missing genotypes are not missing completely at random. Deviation from Hardy-Weinberg proportions is mostly due to a lack of heterozygotes. Inbreeding coefficients estimated by multiple imputation of the missings are typically lowered with respect to inbreeding coefficients estimated by discarding the missings. Accounting for missings by multiple imputation qualitatively changed the results of 10 to 17% of the statistical tests performed. Estimates of inbreeding coefficients obtained by multiple imputation showed high correlation with estimates obtained by single imputation using an external reference panel. Our conclusion is that imputation of missing data leads to improved statistical inference for Hardy-Weinberg proportions.  相似文献   

4.
Whole-genome association studies present many new statistical and computational challenges due to the large quantity of data obtained. One of these challenges is haplotype inference; methods for haplotype inference designed for small data sets from candidate-gene studies do not scale well to the large number of individuals genotyped in whole-genome association studies. We present a new method and software for inference of haplotype phase and missing data that can accurately phase data from whole-genome association studies, and we present the first comparison of haplotype-inference methods for real and simulated data sets with thousands of genotyped individuals. We find that our method outperforms existing methods in terms of both speed and accuracy for large data sets with thousands of individuals and densely spaced genetic markers, and we use our method to phase a real data set of 3,002 individuals genotyped for 490,032 markers in 3.1 days of computing time, with 99% of masked alleles imputed correctly. Our method is implemented in the Beagle software package, which is freely available.  相似文献   

5.
He Y  Li C  Amos CI  Xiong M  Ling H  Jin L 《PloS one》2011,6(7):e22097
The genome-wide association study (GWAS) has become a routine approach for mapping disease risk loci with the advent of large-scale genotyping technologies. Multi-allelic haplotype markers can provide superior power compared with single-SNP markers in mapping disease loci. However, the application of haplotype-based analysis to GWAS is usually bottlenecked by prohibitive time cost for haplotype inference, also known as phasing. In this study, we developed an efficient approach to haplotype-based analysis in GWAS. By using a reference panel, our method accelerated the phasing process and reduced the potential bias generated by unrealistic assumptions in phasing process. The haplotype-based approach delivers great power and no type I error inflation for association studies. With only a medium-size reference panel, phasing error in our method is comparable to the genotyping error afforded by commercial genotyping solutions.  相似文献   

6.
MOTIVATION: Typical high-throughput genotyping techniques produce numerous missing calls that confound subsequent analyses, such as disease association studies. Common remedies for this problem include removing affected markers and/or samples or, otherwise, imputing the missing data. On small marker sets imputation is frequently based on a vote of the K-nearest-neighbor (KNN) haplotypes, but this technique is neither practical nor justifiable for large datasets. RESULTS: We describe a data structure that supports efficient KNN queries over arbitrarily sized, sliding haplotype windows, and evaluate its use for genotype imputation. The performance of our method enables exhaustive exploration over all window sizes and known sites in large (150K, 8.3M) SNP panels. We also compare the accuracy and performance of our methods with competing imputation approaches. AVAILABILITY: A free open source software package, NPUTE, is available at http://compgen.unc.edu/software, for non-commercial uses.  相似文献   

7.
In cluster randomized trials (CRTs), identifiable clusters rather than individuals are randomized to study groups. Resulting data often consist of a small number of clusters with correlated observations within a treatment group. Missing data often present a problem in the analysis of such trials, and multiple imputation (MI) has been used to create complete data sets, enabling subsequent analysis with well-established analysis methods for CRTs. We discuss strategies for accounting for clustering when multiply imputing a missing continuous outcome, focusing on estimation of the variance of group means as used in an adjusted t-test or ANOVA. These analysis procedures are congenial to (can be derived from) a mixed effects imputation model; however, this imputation procedure is not yet available in commercial statistical software. An alternative approach that is readily available and has been used in recent studies is to include fixed effects for cluster, but the impact of using this convenient method has not been studied. We show that under this imputation model the MI variance estimator is positively biased and that smaller intraclass correlations (ICCs) lead to larger overestimation of the MI variance. Analytical expressions for the bias of the variance estimator are derived in the case of data missing completely at random, and cases in which data are missing at random are illustrated through simulation. Finally, various imputation methods are applied to data from the Detroit Middle School Asthma Project, a recent school-based CRT, and differences in inference are compared.  相似文献   

8.
Many investigators are now using haplotype-tagging single-nucleotide polymorphism (htSNPs) as a way of screening regions of the genome for association with disease. A common approach is to genotype htSNPs in a study population and to use this information to draw inferences about each individual's haplotypic makeup, including SNPs that were not directly genotyped. To test the validity of this approach, we simulated the exercise of typing htSNPs in a large sample of individuals and compared the true and inferred haplotypes. The accuracy of haplotype inference varied, depending on the method of selecting htSNPs, the linkage-disequilibrium structure of the region, and the amount of missing data. At the stage of selection of htSNPs, haplotype-block-based methods required a larger number of htSNPs than did unstructured methods but gave lower levels of error in haplotype inference, particularly when there was a significant amount of missing data. We present a Web-based utility that allows investigators to compare the likely error rates of different sets of htSNPs and to arrive at an economical set of htSNPs that provides acceptable levels of accuracy in haplotype inference.  相似文献   

9.
Barendse W 《PloS one》2011,6(12):e29601
In genome wide association studies (GWAS), haplotype analyses of SNP data are neglected in favour of single point analysis of associations. In a recent GWAS, we found that none of the known candidate genes for intramuscular fat (IMF) had been identified. In this study, data from the GWAS for these candidate genes were re-analysed as haplotypes. First, we confirmed that the methodology would find evidence for association between haplotypes in candidate genes of the calpain-calpastatin complex and musculus longissimus lumborum peak force (LLPF), because these genes had been confirmed through single point analysis in the GWAS. Then, for intramuscular fat percent (IMF), we found significant partial haplotype substitution effects for the genes ADIPOQ and CXCR4, as well as suggestive associations to the genes CEBPA, FASN, and CAPN1. Haplotypes for these genes explained 80% more of the phenotypic variance compared to the best single SNP. For some genes the analyses suggested that there was more than one causative mutation in some genes, or confirmed that some causative mutations are limited to particular subgroups of a species. Fitting the SNPs and their interactions simultaneously explained a similar amount of the phenotypic variance compared to haplotype analyses. Haplotype analysis is a neglected part of the suite of tools used to analyse GWAS data, would be a useful method to extract more information from these data sets, and may contribute to reducing the missing heritability problem.  相似文献   

10.
While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.  相似文献   

11.
A variety of statistical methods exist for detecting haplotype-disease association through use of genetic data from a case-control study. Since such data often consist of unphased genotypes (resulting in haplotype ambiguity), such statistical methods typically apply the expectation-maximization (EM) algorithm for inference. However, the majority of these methods fail to perform inference on the effect of particular haplotypes or haplotype features on disease risk. Since such inference is valuable, we develop a retrospective likelihood for estimating and testing the effects of specific features of single-nucleotide polymorphism (SNP)-based haplotypes on disease risk using unphased genotype data from a case-control study. Our proposed method has a flexible structure that allows, among other choices, modeling of multiplicative, dominant, and recessive effects of specific haplotype features on disease risk. In addition, our method relaxes the requirement of Hardy-Weinberg equilibrium of haplotype frequencies in case subjects, which is typically required of EM-based haplotype methods. Also, our method easily accommodates missing SNP information. Finally, our method allows for asymptotic, permutation-based, or bootstrap inference. We apply our method to case-control SNP genotype data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus (FUSION) Genetics study and identify two haplotypes that appear to be significantly associated with type 2 diabetes. Using the FUSION data, we assess the accuracy of asymptotic P values by comparing them with P values obtained from a permutation procedure. We also assess the accuracy of asymptotic confidence intervals for relative-risk parameters for haplotype effects, by a simulation study based on the FUSION data.  相似文献   

12.
By applying an imputation strategy based on the 1000 Genomes project to two genome-wide association studies (GWAS), we detected a susceptibility locus for venous thrombosis on chromosome 11p11.2 that was missed by previous GWAS analyses that had been conducted on the same datasets. A comprehensive linkage disequilibrium and haplotype analysis of the whole locus where twelve SNPs exhibited association p-values lower than 2.23 10(-11) and the use of independent case-control samples demonstrated that the culprit variant was a rare variant located ~1 Mb away from the original hits, not tagged by current genome-wide genotyping arrays and even not well imputed in the original GWAS samples. This variant was in fact the rs1799963, also known as the FII G20210A prothrombin mutation. This work may be of major interest not only for its scientific impact but also for its methodological findings.  相似文献   

13.
Longitudinal data often encounter missingness with monotone and/or intermittent missing patterns. Multiple imputation (MI) has been popularly employed for analysis of missing longitudinal data. In particular, the MI‐GEE method has been proposed for inference of generalized estimating equations (GEE) when missing data are imputed via MI. However, little is known about how to perform model selection with multiply imputed longitudinal data. In this work, we extend the existing GEE model selection criteria, including the “quasi‐likelihood under the independence model criterion” (QIC) and the “missing longitudinal information criterion” (MLIC), to accommodate multiple imputed datasets for selection of the MI‐GEE mean model. According to real data analyses from a schizophrenia study and an AIDS study, as well as simulations under nonmonotone missingness with moderate proportion of missing observations, we conclude that: (i) more than a few imputed datasets are required for stable and reliable model selection in MI‐GEE analysis; (ii) the MI‐based GEE model selection methods with a suitable number of imputations generally perform well, while the naive application of existing model selection methods by simply ignoring missing observations may lead to very poor performance; (iii) the model selection criteria based on improper (frequentist) multiple imputation generally performs better than their analogies based on proper (Bayesian) multiple imputation.  相似文献   

14.
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.  相似文献   

15.
Becker T  Knapp M 《Human heredity》2005,59(4):185-189
In the context of haplotype association analysis of unphased genotype data, methods based on Monte-Carlo simulations are often used to compensate for missing or inappropriate asymptotic theory. Moreover, such methods are an indispensable means to deal with multiple testing problems. We want to call attention to a potential trap in this usually useful approach: The simulation approach may lead to strongly inflated type I errors in the presence of different missing rates between cases and controls, depending on the chosen test statistic. Here, we consider four different testing strategies for haplotype analysis of case-control data. We recommend to interpret results for data sets with non-comparable distributions of missing genotypes with special caution, in case the test statistic is based on inferred haplotypes per individual. Moreover, our results are important for the conduction and interpretation of genome-wide association studies.  相似文献   

16.
ABSTRACT: BACKGROUND: Meta-analysis (MA) is widely used to pool genome-wide association studies (GWASes) in order to a) increasethe power to detect strong or weak genotype effects or b) as a result verification method. As a consequence ofdiffering SNP panels among genotyping chips, imputation is the method of choice within GWAS consortia toavoid losing too many SNPs in a MA. YAMAS (Yet Another Meta Analysis Software), however, enablescross-GWAS conclusions prior to finished and polished imputation runs, which eventually are time-consuming. RESULTS: Here we present a fast method to avoid forfeiting SNPs present in only a subset of studies, without relying onimputation. This is accomplished by using reference linkage disequilibrium data from 1,000Genomes/HapMap projects to find proxy-SNPs together with in-phase alleles for SNPs missing in at least onestudy. MA is conducted by combining association effect estimates of a SNP and those of its proxy-SNPs. Ouralgorithm is implemented in the MA software YAMAS. Association results from GWAS analysis applicationscan be used as input files for MA, tremendously speeding up MA compared to the conventional imputationapproach. We show that our proxy algorithm is well-powered and yields valuable ad hoc results, possiblyproviding an incentive for follow-up studies. We propose our method as a quick screening step prior toimputation-based MA, as well as an additional main approach for studies without available reference datamatching the ethnicities of study participants. As a proof of principle, we analyzed six dbGaP Type II DiabetesGWAS and found that the proxy algorithm clearly outperforms naive MA on the P-value level: for 17 out of23 we observe an improvement on the p-value level by a factor of more than two, and a maximumimprovement by a factor of 2127. CONCLUSIONS: YAMAS is an efficient and fast meta-analysis program which offers various methods, including conventionalMA as well as inserting proxy-SNPs for missing markers to avoid unnecessary power loss. MA with YAMAScan be readily conducted as YAMAS provides a generic parser for heterogeneous tabulated file formats withinthe GWAS field and avoids cumbersome setups. In this way, it supplements the meta-analysis process.  相似文献   

17.
MOTIVATION: Missing data in genotyping single nucleotide polymorphism (SNP) spots are common. High-throughput genotyping methods usually have a high rate of missing data. For example, the published human chromosome 21 data by Patil et al. contains about 20% missing SNPs. Inferring missing SNPs using the haplotype block structure is promising but difficult because the haplotype block boundaries are not well defined. Here we propose a global algorithm to overcome this difficulty. RESULTS: First, we propose to use entropy as a measure of haplotype diversity. We show that the entropy measure combined with a dynamic programming algorithm produces better haplotype block partitions than other measures. Second, based on the entropy measure, we propose a two-step iterative partition-inference algorithm for the inference of missing SNPs. At the first step, we apply the dynamic programming algorithm to partition haplotypes into blocks. At the second step, we use an iterative process similar to the expectation-maximization algorithm to infer missing SNPs in each haplotype block so as to minimize the block entropy. The algorithm iterates these two steps until the total block entropy is minimized. We test our algorithm in several experimental data sets. The results show that the global approach significantly improves the accuracy of the inference. AVAILABILITY: Upon request.  相似文献   

18.
We focus on the problem of generalizing a causal effect estimated on a randomized controlled trial (RCT) to a target population described by a set of covariates from observational data. Available methods such as inverse propensity sampling weighting are not designed to handle missing values, which are however common in both data sources. In addition to coupling the assumptions for causal effect identifiability and for the missing values mechanism and to defining appropriate estimation strategies, one difficulty is to consider the specific structure of the data with two sources and treatment and outcome only available in the RCT. We propose three multiple imputation strategies to handle missing values when generalizing treatment effects, each handling the multisource structure of the problem differently (separate imputation, joint imputation with fixed effect, joint imputation ignoring source information). As an alternative to multiple imputation, we also propose a direct estimation approach that treats incomplete covariates as semidiscrete variables. The multiple imputation strategies and the latter alternative rely on different sets of assumptions concerning the impact of missing values on identifiability. We discuss these assumptions and assess the methods through an extensive simulation study. This work is motivated by the analysis of a large registry of over 20,000 major trauma patients and an RCT studying the effect of tranexamic acid administration on mortality in major trauma patients admitted to intensive care units. The analysis illustrates how the missing values handling can impact the conclusion about the effect generalized from the RCT to the target population.  相似文献   

19.
Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.  相似文献   

20.
Pei YF  Li J  Zhang L  Papasian CJ  Deng HW 《PloS one》2008,3(10):e3551
The power of genetic association analyses is often compromised by missing genotypic data which contributes to lack of significant findings, e.g., in in silico replication studies. One solution is to impute untyped SNPs from typed flanking markers, based on known linkage disequilibrium (LD) relationships. Several imputation methods are available and their usefulness in association studies has been demonstrated, but factors affecting their relative performance in accuracy have not been systematically investigated. Therefore, we investigated and compared the performance of five popular genotype imputation methods, MACH, IMPUTE, fastPHASE, PLINK and Beagle, to assess and compare the effects of factors that affect imputation accuracy rates (ARs). Our results showed that a stronger LD and a lower MAF for an untyped marker produced better ARs for all the five methods. We also observed that a greater number of haplotypes in the reference sample resulted in higher ARs for MACH, IMPUTE, PLINK and Beagle, but had little influence on the ARs for fastPHASE. In general, MACH and IMPUTE produced similar results and these two methods consistently outperformed fastPHASE, PLINK and Beagle. Our study is helpful in guiding application of imputation methods in association analyses when genotype data are missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号