首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhan CG  Gao D 《Biophysical journal》2005,89(6):3863-3872
The geometries of the transition states, intermediates, and prereactive enzyme-substrate complex and the corresponding energy barriers have been determined by performing hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)- and (+)-cocaine. The energy barriers were evaluated by performing QM/MM calculations with the QM method at the MP2/6-31+G* level and the MM method using the AMBER force field. These calculations allow us to account for the protein environmental effects on the transition states and energy barriers of these enzymatic reactions, showing remarkable effects of the protein environment on intermolecular hydrogen bonding (with an oxyanion hole), which is crucial for the transition state stabilization and, therefore, on the energy barriers. The calculated energy barriers are consistent with available experimental kinetic data. The highest barrier calculated for BChE-catalyzed hydrolysis of (-)- and (+)-cocaine is associated with the third reaction step, but the energy barrier calculated for the first step is close to the highest and is so sensitive to the protein environment that the first reaction step can be rate determining for (-)-cocaine hydrolysis catalyzed by a BChE mutant. The computational results provide valuable insights into future design of BChE mutants with a higher catalytic activity for (-)-cocaine.  相似文献   

2.
J Aqvist  A Warshel 《Biochemistry》1989,28(11):4680-4689
Calculations of the free energy profile for the first two (rate-limiting) steps of the staphylococcal nuclease catalyzed reaction are reported. The calculations are based on the empirical valence bond method in combination with free energy perturbation molecular dynamics simulations. The calculated activation free energy is in good agreement with experimental kinetic data, and the catalytic effect of the enzyme is reproduced without any arbitrary adjustment of parameters. The enormous reduction of the activation barrier (relative to the reference reaction in water) appears to be largely associated with the strong electrostatic effect of the Ca2+ ion and the two arginine residues in the active site. This favorable electrostatic environment reduces the cost of the general-base catalysis step by almost 15 kcal/mol (by stabilizing the OH- nucleophile) and then stabilizes the developing negative charge on the 5'-phosphate group in the second step of the reaction by about 19 kcal/mol. The basic features of the originally postulated enzyme mechanism (Cotton et al., 1979) are found to be compatible with the observed activation free energy. However, the proposed modification of the mechanism (Sepersu et al., 1987), in which Arg 87 interacts only with the pentacoordinated transition state, is supported by the simulations. Further calculations on the D21E mutant also give results in good agreement with kinetic data.  相似文献   

3.
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.  相似文献   

4.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

5.
Energetics and mechanism of proline racemase   总被引:1,自引:0,他引:1  
W J Albery  J R Knowled 《Biochemistry》1986,25(9):2572-2577
The results from the previous six papers are collated so as to allow the construction of the complete free energy profile for the reaction catalyzed by proline racemase. This profile includes the step that involves the isomerization of the two forms of free enzyme, which can become rate limiting at very high substrate levels (in "oversaturation"). The mechanism of the reaction has been defined, the results being best accommodated by a route that involves a transition state or unstable intermediate in which the proline carbanion is flanked by the two catalytic thiols of the enzyme.  相似文献   

6.
Zhang X  Bruice TC 《Biochemistry》2007,46(34):9743-9751
There are three reaction steps in the S-adenosylmethionine (AdoMet) methylation of lysine-NH2 catalyzed by a methyltransferase. They are (i) combination of enzyme.Lys-NH3+ with AdoMet, (ii) substrate ionization to provide enzyme.AdoMet.Lys-NH2, and (iii) methyl transfer providing enzyme.AdoHcy.Lys-N(Me)H2+ and the dissociation of AdoHcy. In this study of the viral histone methyltransferase (vSET), we find that substrate ionization of vSET.Lys27-NH3+, vSET.Lys27-N(Me)H2+, and vSET.Lys27-N(Me)2H+ takes place upon combination with AdoMet. The presence of a water channel allows dissociation of a proton to the solvent. There is no water channel in the absence of AdoMet. That the formation of a water channel is combined with AdoMet binding was first discovered in our investigation of Rubisco large subunit methyltransferase. Via a quantum mechanics/molecular mechanics (QM/MM) approach, the calculated free energy barrier (DeltaG++) of the first methyl transfer reaction catalyzed by vSET [Lys27-NH2 + AdoMet --> Lys27-N(Me)H2+ + AdoHcy] equals 22.5 +/- 4.3 kcal/mol, which is in excellent agreement with the free energy barrier (21.7 kcal/mol) calculated from the experimental rate constant (0.047 min-1). The calculated DeltaG++ of the second methyl transfer reaction [AdoMet + Lys27-N(Me)H --> AdoHcy + Lys27-N(Me)2H+] at the QM/MM level is 22.6 +/- 3.6 kcal/mol, which is in agreement with the value of 22.4 kcal/mol determined from the experimental rate constant (0.015 min-1). The third methylation [Lys27-N(Me)2 + AdoMet --> Lys27-N(Me)3+ + AdoHcy] is associated with a DeltaG++ of 23.1 +/- 4.0 kcal/mol, which is in agreement with the value of 23.0 kcal/mol determined from the experimental rate constant (0.005 min-1). Our computations establish that the first, second, and third methyl transfer steps catalyzed by vSET are linear SN2 reactions with the bond making being approximately 50% associative.  相似文献   

7.
Enzyme catalyzed phosphate transfer is a part of almost all metabolic processes. Such reactions are of central importance for the energy balance in all organisms and play important roles in cellular control at all levels. Mutases transfer a phosphoryl group while nucleases cleave the phosphodiester linkages between two nucleotides. The subject of our present study is the Lactococcus lactis β-phosphoglucomutase (β-PGM), which effectively catalyzes the interconversion of β-D-glucose-1-phosphate (β-G1P) to β-D-glucose-6-phosphate (β-G6P) and vice versa via stabile intermediate β-D-glucose-1,6-(bis)phosphate (β-G1,6diP) in the presence of Mg(2+). In this paper we revisited the reaction mechanism of the phosphoryl transfer starting from the bisphosphate β-G1,6diP in both directions (toward β-G1P and β-G6P) combining docking techniques and QM/MM theoretical method at the DFT/PBE0 level of theory. In addition we performed NEB (nudged elastic band) and free energy calculations to optimize the path and to identify the transition states and the energies involved in the catalytic cycle. Our calculations reveal that both steps proceed via dissociative pentacoordinated phosphorane, which is not a stabile intermediate but rather a transition state. In addition to the Mg(2+) ion, Ser114 and Lys145 also play important roles in stabilizing the large negative charge on the phosphate through strong coordination with the phosphate oxygens and guiding the phosphate group throughout the catalytic process. The calculated energy barrier of the reaction for the β-G1P to β-G1,6diP step is only slightly higher than for the β-G1,6diP to β-G6P step (16.10 kcal mol(-1) versus 15.10 kcal mol(-1)) and is in excellent agreement with experimental findings (14.65 kcal mol(-1)).  相似文献   

8.
A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph‐theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions.  相似文献   

9.
Lihua Dong  Yongjun Liu 《Proteins》2017,85(6):1146-1158
Chorismatase is an important enzyme involved in Shikimate pathway, which catalyzes the conversion of chorismate into pyruvate and (dihydro)‐benzoic acid derivatives. According to the outcomes of catalytic reactions, chorismatases can be divided into three subfamilies: CH‐Fkbo, CH‐Hyg5 and CH‐XanB2. Recently, the crystal structures of CH‐Fkbo and CH‐Hyg5 from Streptomyces hygroscopicus have been successfully obtained, allowing us to perform QM/MM calculations to explore the reaction details. Our calculation results support the proposal that CH‐Fkbo and CH‐Hyg5 employ different catalytic mechanisms and gave the mechanistic details. Fkbo follows a typical hydrolytic mechanism, which contains three consecutive steps, including the protonation step of the methylene group of substrate, the nucleophilic attack of the resulted carbocation by activated water and cleavage of C2′‐O8 bond of tetrahedral intermediate (hemiketal). The protonation of methylene group and the C2′‐O8 cleavage correspond to similar energy barriers (26.5 and 24.8 kcal/mol), suggesting both steps to be rate‐limiting. Whereas Hyg5 employs an intramolecular mechanism, in which the oxygen from C4 migrates to C3 via an arene oxide intermediate. The first step of Hyg5, which corresponds to the concerted protonation of methylene group and the cleavage of C3‐O8, is calculated to be rate‐limiting with an energy barrier of 26.3 kcal/mol. The nonconserved active site residue G240Hyg5 (or A244Fkb°) is suggested to be responsible for leading to different reaction mechanism in CH‐Fkbo and CH‐Hyg5. During the catalytic reaction, residue C327 plays an important role in directing the product selectivity in Hyg5 enzyme. Proteins 2017; 85:1146–1158. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
The oxidation of phenols to ortho-quinones, catalyzed by tyrosinase, has been studied using the hybrid DFT method B3LYP. Since no X-ray structure exists for tyrosinase, information from the related enzymes hemocyanin and catechol oxidase were used to set up a chemical model for the calculations. Previous studies have indicated that the direct cleavage of O(2) forming a Cu(2)(III,III) state is energetically very unlikely. The present study therefore followed another mechanism previously suggested. In this mechanism, dioxygen attacks the phenolate ring which is then followed by O[bond]O cleavage. The calculations give a reasonable barrier for the O(2) attack of only 12.3 kcal/mol, provided one of the copper ligands is able to move substantially away from its direct copper coordination. This can be achieved with six histidine ligands even if these ligands are held in their positions by the enzyme, but can also be achieved if one of the coppers only has two histidine ligands and the third ligand is water. The next step of O[bond]O cleavage has a computed barrier of 14.4 kcal/mol, in reasonable agreement with the experimental overall rate for the catalytic cycle. For the other steps of the mechanism, only a preliminary investigation was made, indicating a few problems which require future QM/MM studies.  相似文献   

11.
Wong KY  Gao J 《Biochemistry》2007,46(46):13352-13369
Molecular dynamics simulations employing combined quantum mechanical and molecular mechanical (QM/MM) potentials have been carried out to investigate the reaction mechanism of the hydrolysis of paraoxon by phosphotriesterase (PTE). We used a dual-level QM/MM approach that synthesizes accurate results from high-level electronic structure calculations with computational efficiency of semiempirical QM/MM potentials for free energy simulations. In particular, the intrinsic (gas-phase) energies of the active site in the QM region are determined by using density functional theory (B3LYP) and second-order M?ller-Plesset perturbation theory (MP2) and the molecular dynamics free energy simulations are performed by using the mixed AM1:CHARMM potential. The simulation results suggest a revised mechanism for the phosphotriester hydrolysis mechanism by PTE. The reaction free energy profile is mirrored by structural motions of the binuclear metal center in the active site. The two zinc ions occupy a compact conformation with an average zinc-zinc distance of 3.5 +/- 0.1 A in the Michaelis complex, whereas it is elongated to 5.3 +/- 0.3 A at the transition state and product state. The substrate is loosely bound to the more exposed zinc ion (Znbeta2+) at an average distance of 3.8 A +/- 0.3 A. The P=O bond of the substrate paraoxon is activated by adopting a tight coordination to the Znbeta2+, releasing the coordinate to the bridging hydroxide ion and increasing its nucleophilicity. It was also found that a water molecule enters into the binding pocket of the loosely bound binuclear center, originally occupied by the nucleophilic hydroxide ion. We suggest that the proton of this water molecule is taken up by His254 at low pH or released to the solvent at high pH, resulting in a hydroxide ion that pulls the Znbeta2+ ion closer to form the compact configuration and restores the resting state of the enzyme.  相似文献   

12.
We present results of the modeling for the hydrolysis reaction of guanosine triphosphate (GTP) in the RAS-GAP protein complex using essentially ab initio quantum chemistry methods. One of the approaches considers a supermolecular cluster composed of 150 atoms at a consistent quantum level. Another is a hybrid QM/MM method based on the effective fragment potential technique, which describes interactions between quantum and molecular mechanical subsystems at the ab initio level of the theory. Our results show that the GTP hydrolysis in the RAS-GAP protein complex can be modeled by a substrate-assisted catalytic mechanism. We can locate a configuration on the top of the barrier corresponding to the transition state of the hydrolysis reaction such that the straightforward descents from this point lead either to reactants GTP+H(2)O or to products guanosine diphosphate (GDP)+H(2)PO(4)(-). However, in all calculations such a single-step process is characterized by an activation barrier that is too high. Another possibility is a two-step reaction consistent with formation of an intermediate. Here the Pgamma-O(Pbeta) bond is already broken, but the lytic water molecule is still in the pre-reactive state. We present arguments favoring the assumption that the first step of the GTP hydrolysis reaction in the RAS-GAP protein complex may be assigned to the breaking of the Pgamma-O(Pbeta) bond prior to the creation of the inorganic phosphate.  相似文献   

13.
The role of polypeptide backbone interactions in 4-oxalocrotonate tautomerase (4OT) catalysis has been investigated using a combination of site-directed mutagenesis experiments with unnatural amino acids and quantum mechanical/molecular mechanical (QM/MM) calculations of the 4OT reaction mechanism. Energy barriers for the wild-type enzyme (wt-4OT) and for a 4OT analogue containing a backbone amide to ester bond mutation between Ile-7 and Leu-8 [(OL8)4OT] were determined by both theory and experiment. The amide to ester bond mutation in (OL8)4OT effectively deleted a putative hydrogen bonding interaction between the enzyme's polypeptide backbone and its substrate. Recent theoretical calculations for the 4OT reaction mechanism suggested that this hydrogen bonding interaction helps properly position the substrate in the active site [Cisneros, G. A., et al. (2003) J. Am. Chem. Soc. 125, 10384-10393]. Our experimental results for (OL8)4OT reveal that the energy barrier for the (OL8)4OT-catalyzed reaction was increased 1.8 kcal/mol over that of the wild-type enzyme. This increase was in good agreement with the 1.0 kcal/mol increase obtained from QM/MM calculations for this analogue. Our theoretical calculations further suggest the hydrogen bond deletion in (OL8)4OT results in a rearrangement of the substrate in the active site. In this rearrangement, an ordered water molecule loses its ability to stabilize the transition state (TS), and Arg-61 gains the ability to stabilize the TS. The predicted role of Arg-61 in (OL8)4OT catalysis was confirmed in kinetic experiments with an analogue of (OL8)4OT containing an Arg to Ala mutation at position 61.  相似文献   

14.
Zhang X  Zhang X  Bruice TC 《Biochemistry》2005,44(31):10443-10448
In previous research presentations, we have described the important features of the chorismate --> prephenate reaction using molecular dynamics (MD) and thermodynamic integration studies. This investigation of the reaction in Escherichia coli and water involves QM/MM procedures (SCCDFTB/MM two-dimensional reaction coordinates to identify transition state structures in the water, enzyme, and gas phase followed by B3LYP/6-31+G* single-point computations which allow the determination of activation energies in water and in the E. coli enzyme). Computed activation energies of 11.3 kcal/mol in enzyme and 20.3 kcal/mol in water may be compared to the experimental values of 12.7 and 20.7 kcal/mol, respectively. The transition state structures in the gas phase, water, and enzyme are much the same. The transition states are characteristic of a concerted pericyclic rearrangement. The very small differences in the partial charges of O13 in NAC and TS support only a small preferential (10%) electrostatic stabilization of TS. The free energy of NAC formation in water exceeds that in enzyme by 8.5 kcal/mol, and it is this favored formation of NAC that provides the major kinetic advantage to the enzymatic reaction. These findings compare most favorably with those previous observations of this laboratory employing molecular dynamics and thermodynamic integrations. A definitive mechanism for the chorismate mutase enzymes is provided.  相似文献   

15.
Chenxiao Zhao  Lihua Dong  Yongjun Liu 《Proteins》2017,85(11):1967-1974
RlmN is a radical S‐adenosylmethionine (SAM) enzyme that catalyzes the C2 methylation of adenosine 2503 (A2503) in 23S rRNA and adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNA). The catalytic reaction of RlmN is distinctly different from that of typical SAM‐dependent methyltransferases that employs an SN2 mechanism, but follows a ping‐pong mechanism which involves the intermediate methylation of a conserved cysteine residue. Recently, the x‐ray structure of a key intermediate in the RlmN reaction has been reported, allowing us to perform combined quantum mechanics and molecular mechanics (QM/MM) calculations to delineate the reaction details of RlmN at atomic level. Starting from the Cross‐Linked RlmN C118A?tRNA complex, the possible mechanisms for both the formation and the resolution of the cross‐linked species (IM2) have been illuminated. On the basis of our calculations, IM2 is formed by the attack of the C355‐based methylene radical on the sp2‐hybridized C2 of the adenosine ring, corresponding to energy barrier of 14.4 kcal/mol, and the resolution of IM2 is confirmed to follow a radical fragmentation mechanism. The cleavage of C′–S′ bond of mC355‐A37 cross‐link is in concert with the deprotonation of C2 by C118 residue, which is the rate‐limiting step with an energy barrier of 17.4 kcal/mol. Moreover, the cleavage of C′–S′ bond of IM2 can occur independently, that is, it does not require the loss of an electron of IM2 and the formation of disulfide bond between C355 and C118 as precondition. These findings would deepen the understanding of the catalysis of RlmN.  相似文献   

16.
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds.  相似文献   

17.
The initial nucleophilic substitution step of biapenem hydrolysis catalyzed by a subclass B2 metallo-beta-lactamase (CphA from Aeromonas hydrophila) is investigated using hybrid quantum mechanical/molecular mechanical methods and density functional theory. We focused on a recently proposed catalytic mechanism that involves a non-metal-binding water nucleophile in the active site of the monozinc CphA. Both theoretical models identified a single transition state featuring nearly concomitant nucleophilic addition and elimination steps, and the activation free energy from the potential of mean force calculations was estimated to be approximately 14 kcal/mol. The theoretical results also identified the general base for activating the water nucleophile to be the metal-binding Asp-120 rather than His-118, as suggested earlier. The protonation of Asp-120 leads to cleavage of the O(delta2)-Zn coordination bond, whereas the negatively charged nitrogen leaving group resulting from the ring opening replaces Asp-120 as the fourth ligand of the sole zinc ion. The electrophilic catalysis by the metal ion provides sufficient stabilization for the leaving group to avoid a tetrahedral intermediate. The theoretical studies provided detailed insights into the catalytic strategy of this unique metallo-beta-lactamase.  相似文献   

18.
19.
Zhang X  Bruice TC 《Biochemistry》2007,46(18):5505-5514
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of Rubisco large subunit methyltransferase (LSMT). It was found that the appearance of a water channel is required for the stepwise methylation by S-adenosylmethionine (AdoMet). The water channel appears in the presence of AdoMet (LSMT.Lys-NH3+.AdoMet), but is not present immediately after methyl transfer (LSMT.Lys-N(Me)H2+.AdoHcy). The water channel allows proton dissociation from both LSMT.AdoMet.Lys-NH3+ and LSMT.AdoMet.Lys-N(Me)H2+. The water channel does not appear for proton dissociation from LSMT.AdoMet.Lys-N(Me)2H+, and a third methyl transfer does not occur. By QM/MM, the calculated free energy barrier of the first methyl transfer reaction catalyzed by LSMT (Lys-NH2 + AdoMet --> Lys-N(Me)H2+ + AdoHcy) is DeltaG++ = 22.8 +/- 3.3 kcal/mol. This DeltaG++ is in remarkable agreement with the value 23.0 kcal/mol calculated from the experimental rate constant (6.2 x 10-5 s-1). The calculated DeltaG++ of the second methyl transfer reaction (AdoMet + Lys-N(Me)H --> AdoHcy + Lys-N(Me)2H+) at the QM/MM level is 20.5 +/- 3.6 kcal/mol, which is in agreement with the value 22.0 kcal/mol calculated from the experimental rate constant (2.5 x 10-4 s-1). The third methyl transfer (Lys-N(Me)2 + AdoMet --> Lys-N(Me)3+ + AdoHcy) is associated with an allowed DeltaG++ of 25.9 +/- 3.2 kcal/mol. However, this reaction does not occur because a water channel does not form to allow the proton dissociation of Lys-N(Me)2H+. Future studies will determine whether the product specificity of lysine (mono, di, and tri) methyltransferases is determined by the formation of water channels.  相似文献   

20.
Dodson ML  Walker RC  Lloyd RS 《PloS one》2012,7(2):e31377
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics-molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water-independent enzyme-catalyzed reaction had a bias-corrected Jarzynski-average barrier height of approximately (6.5 kcal mol(-1) (27.2 kJ mol(-1)) for the carbinolamine formation reaction and 44.5 kcal mol(-1) (186 kJ mol(-1)) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately 15 kcal mol(-1) (62.8 kJ mol(-1)) in the forward (formation) reaction and 19 kcal mol(-1) (79.5 kJ mol(-1)) for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water-independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N-terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N-terminal amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号