首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the chemical and physicochemical characteristics of dissolved organic carbon in the Ado River and the Yasu River, the main rivers flowing into Lake Biwa, the adsorption behavior onto hydrous iron oxide (HIO) and the reactivity to KMnO4 oxidant were investigated in parallel with measurement of the distribution profiles of dissolved organic carbon (DOC) along the rivers. In one year of observation at the mouths of the two rivers, DOC concentrations were found to vary in the Ado over the range 0.28–1.21 mg C l−1 and in the Yasu over the range 1.01–2.68 mg C l−1. Act-DOC, one of the fractions separated from the total DOC by its adsorption-active character onto HIO at pH 4, was thought primarily to control the variation of total DOC, as in Lake Biwa. The int-DOC, another fraction separated by its adsorption-inert or -inactive character onto HIO, remained at almost a steady value around 0.18 ± 0.07 mg C l−1 in the Ado, which was lower than that (0.35 ± 0.05 mg C l−1) in Lake Biwa. The act-DOC in river waters was reactive to KMnO4 oxidant, showing a linear relation with the amount of permanganate consumed for the reaction (chemical oxygen demand: COD). In river waters, the relation can be approximated by a straight line expressed as COD (mg O2 l−1) = 0.64 × act-DOC (mg C l−1) − 0.02. In contrast, in the lake water the relation was COD (mg O2 l−1) = 0.97 × act-DOC (mg C l−1) − 0.50. Received: March 3, 1999 / Accepted: December 2, 1999  相似文献   

2.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

3.
Over two hundred samples were collected in tropical headwater forested catchments in the lowland Amazon basin near Juruena, Mato Grosso Brazil. These were analyzed for fluorescence characteristics and DOC concentrations, and represented a range of terrestrial hydrologic flowpaths and first-order streams during baseflow and stormflow conditions. The fluorescence index (FI) of McKnight et al. (2001) was found to have a significant relationship with DOC concentrations for stream water at baseflow conditions, but FI values within individual terrestrial flowpaths and stormflow varied little for the range of DOC concentrations observed. FI values were seen to increase for increasing residence time of water within the terrestrial ecosystem, while DOC concentration decreased for increasing hydrologic residence time. The FI of terrestrial flow paths indicated that DOC became increasingly characterized by microbially derived carbon for flow paths with longer residence times, on the order through fall and overland flow < percolating soil water < groundwater. Base flow samples of stream water had a mean FI value of 1.78, compared with 1.51 and 1.44 for through fall and overland flow, respectively, and 1.65 for percolating soil water. The FI values for stream water at base flow were also seen to vary seasonally, and were inversely proportional to DOC concentrations over time.  相似文献   

4.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

5.
Dissolved organic carbon (DOC) plays an important role in surface water chemistry and ecology and trends in DOC concentration have been also associated with shifts in terrestrial carbon pools. Numerous studies have reported long-term trends in DOC concentration; however, some studies consider changes in average measured DOC whereas other compute discharge weighted concentrations. Because of differences in reporting methods and variable record lengths it is difficult to compare results among studies and make regional generalizations. Furthermore, changes in stream discharge may impact long-term trends in DOC concentration and the potentially subtle effect of shifts in stream flow may be missed if only measured DOC concentrations are considered. In this study we compare trends in volume-weighted vs. average measured DOC concentration between 1980 and 2001 at seven headwater streams in south-central Ontario, Canada that vary in wetland coverage and DOC (22-year mean vol. wt.) from 3.4 to 10.6 mg l−1. On average, annual measured DOC concentrations were 13–34% higher than volume-weighted values, but differences of up to 290% occurred in certain years. Estimates of DOC flux were correspondingly higher using measured concentration values. Both measured and volume-weighted DOC concentrations increased significantly between 1980 and 2001, but slopes were larger in measured data (0.04–0.35 mg l−1 year−1 compared with 0.05–0.15 mg l−1 year−1) and proportional increases at the most wetland-influenced sites ranged from 32 to 43% in volume-weighted DOC and from 52 to 75% in measured DOC. In contrast, DOC flux did not change with time when estimated using either method, because of the predominant influence of stream flow on DOC export. Our results indicate that changes in stream flow have an important impact on trends in DOC concentration, and extrapolation of trend results from one region to another should be made cautiously and consider methodological and reporting differences among sites.  相似文献   

6.
The Ferrous Wheel Hypothesis (Davidson et al. 2003) postulates the abiotic formation of dissolved organic N (DON) in forest floors, by the fast reaction of NO2 with dissolved organic C (DOC). We investigated the abiotic reaction of NO2 with dissolved organic matter extracted from six different forest floors under oxic conditions. Solutions differed in DOC concentrations (15–60 mg L−1), NO2 concentrations (0, 2, 20 mg NO2 -N L−1) and DOC/DON ratio (13.4–25.4). Concentrations of added NO2 never decreased within 60 min, therefore, no DON formation from added NO2 took place in any of the samples. Our results suggest that the reaction of NO2 with natural DOC in forest floors is rather unlikely.  相似文献   

7.
We determined concentrations and fluxes of dissolved organic carbon (DOC) in precipitation, throughfall, forest floor and mineral soil leachates from June 2004 to May 2006 across an age-sequence (2-, 15-, 30-, and 65-year-old) of white pine (Pinus strobus L.) forests in southern Ontario, Canada. Mean DOC concentration in precipitation, throughfall, leachates of forest floor, Ah-horizon, and of mineral soil at 1 m depth ranged from ∼2 to 7, 9 to 18, 32 to 88, 20 to 66, and 2 to 3 mg DOC L−1, respectively, for all four stands from April (after snowmelt) through December. DOC concentration in forest floor leachates was highest in early summer and positively correlated to stand age, aboveground biomass and forest floor carbon pools. DOC fluxes via precipitation, throughfall, and leaching through forest floor and Ah-horizon between were in the range of ∼1 to 2, 2 to 4, 0.5 to 3.5, and 0.1 to 2 g DOC m−2, respectively. DOC export from the forest ecosystem during that period through infiltration and groundwater discharge was estimated as ∼7, 4, 3, and 2 g DOC m−2 for the 2-, 15-, 30-, and 65-year-old sites, respectively, indicating a decrease with increasing stand age. Laboratory DOC sorption studies showed that the null-point DOC concentration fell from values of 15 to 60 mg DOC L−1 at 0 to 5 cm to <15 mg DOC L−1 at 50 cm. Specific ultraviolet light absorption at 254 nm (SUVA254) increased from precipitation and throughfall to a maximum in forest floor and decreased with mineral soil depth. No age-related pattern was observed for SUVA254 values. DOC concentration in forest floor soil solutions showed a positive exponential relationship with soil temperature, and a negative exponential relationship with soil moisture at all four sites. Understanding the changes and controls of DOC concentrations, chemistry, and fluxes at various stages of forest stand development is necessary to estimate and predict DOC dynamics on a regional landscape level and to evaluate the effect of land-use change.  相似文献   

8.
Planktonic heterotrophic bacteria in lakes utilize the labile fraction of dissolved organic carbon (DOC), although information about seasonal changes in labile DOC in hypertrophic lakes in terms of absolute amount and relative proportion of the total DOC is still limited. We conducted DOC decomposition experiments using GF/F filtrates in water samples from hypertrophic Furuike Pond, together with monitoring of DOC concentration and bacterial abundance in water samples from the pond, to examine seasonal changes in the amount of labile DOC and growth of bacteria on labile DOC. DOC concentrations fluctuated between 2.7 and 11 mg C l−1, and bacterial abundance fluctuated between 1.5 × 106 and 1.0 × 108 cells ml−1. In the DOC decomposition experiment when grazers of bacteria were removed, small portions of DOC (18% ± 12%) were labile for decomposition by bacteria, and the growth yield of bacteria on labile DOC ranged between 3.3% and 19%. Furthermore, addition of nitrogen to water samples enhanced bacterial growth. Thus, not only labile DOC but also nitrogen limited bacterial growth in the pond. Considering the results in the present study together with those of previous studies, bacterial abundance in Furuike Pond is subjected to bottom-up control, such as by limitation of DOC and nitrogen throughout the year, although top-down control of bacterial abundance such as by grazing is seasonally important. Received: May 1, 2001 / Accepted: July 22, 2001  相似文献   

9.
Monthly (or bi-weekly) water samples were collected from the Yukon River, one of the largest rivers in North America, at a station near the US Geological Survey Stevens Village hydrological station, Alaska from May to September 2002, to examine the quantity and quality of dissolved organic matter (DOM) and its seasonal variations. DOM was further size fractionated into high molecular weight (HMW or colloidal, 1 kDa–0.45 μm) and low molecular weight (LMW, <1 kDa) fractions. Dissolved organic carbon (DOC), colored dissolved organic matter (C-DOM) and total dissolved carbohydrate (TCHO) species were measured in the size fractionated DOM samples. Concentrations of DOC were as high as 2830 μmol-C l−1 during the spring breakup in May and decreased significantly to 508–558 μmol-C l−1 during open-water season (June–September). Within the DOC pool, up to 85% was in the colloidal fraction (1 kDa–0.45 μm) in early May. As DOC concentration decreased, this colloidal portion remained high (70–85% of the bulk DOC) throughout the sampling season. Concentrations of TCHO, including monosaccharides (MCHO) and polysaccharides (PCHO), varied from 722 μmol-C l−1 in May to 129 μmol-C l−1 in September, which comprised a fairly constant portion of bulk DOC (24±2%). Within the TCHO pool, the MCHO/TCHO ratio consistently increased from May to September. The C-DOM/DOM ratio and the size fractionated DOM increased from May to September, indicating that DOM draining into the Yukon River contained increased amounts of humified materials, likely related to a greater soil leaching efficiency in summer. The average composition of DOM was 76% pedogenic humic matter and 24% aquagenic CHO. Characteristics of soil-derived humic substances and low chlorophyll-a concentrations support a dominance of terrestrial DOM in Yukon River waters.  相似文献   

10.
Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S, and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds. Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and 435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes, these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area. Received 13 August 1998; accepted 7 September 1999.  相似文献   

11.
Studies on biogeochemical cycling of carbon in the Chilka Lake, Asia’s largest brackish lagoon on the east coast of India, revealed, for the first time, strong seasonal and spatial variability associated with salinity distribution. The lake was studied twice during May 2005 (premonsoon) and August 2005 (monsoon). It exchanges waters with the sea (Bay of Bengal) and several rivers open into the lake. The lake showed contrasting levels of dissolved inorganic carbon (DIC) and organic carbon (DOC) in different seasons; DIC was higher by ∼22% and DOC was lower by ∼36% in premonsoon than in monsoon due to seasonal variations in their supply from rivers and in situ production/mineralisation. The DIC/DOC ratios in the lake during monsoon were influenced by physical mixing of end member water masses and by intense respiration of organic carbon. A strong relationship between excess DIC and apparent oxygen utilisation showed significant control of biological processes over CO2 production in the lake. Surface partial pressure of CO2 (pCO2), calculated using pH–DIC couple according to Cai and Wang (Limnol and Oceanogr 43:657–668, 1998), exhibited discernable gradients during monsoon through northern (1,033–6,522 μatm), central (391–2,573 μatm) and southern (102–718 μatm) lake. The distribution pattern of pCO2 in the lake seems to be governed by pCO2 levels in rivers and their discharge rates, which were several folds higher during monsoon than premonsoon. The net CO2 efflux, based on gas transfer velocity parameterisation of Borges et al. (Limnol and Oceanogr 49(5):1630–1641, 2004), from entire lake during monsoon (141 mmolC m−2 d−1 equivalent to 2.64 GgC d−1 at basin scale) was higher by 44 times than during premonsoon (9.8 mmolC m−2 d−1 ≈ 0.06 GgC d−1). 15% of CO2 efflux from lake in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (−308 mmolC m−2 d−1 ≈ −3.77 GgC d−1) was found to be almost in consistent with the total riverine organic carbon trapped in the lake (229 mmolC m−2 d−1 ≈ 2.80 GgC d−1) suggesting that the strong heterotrophy in the lake is mainly responsible for elevated fluxes of CO2 during monsoon. Further, the pelagic net community production represented 92% of NEP and benthic compartment plays only a minor role. This suggests that Chilka lake is an important region in biological transformation of organic carbon to inorganic carbon and its export to the atmosphere.  相似文献   

12.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

13.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

14.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

15.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

16.
Dissolved organic carbon (DOC) dynamics in streams is important, yet few studies focus on DOC dynamics in Midwestern streams during storms. In this study, stream DOC dynamics during storms in two Midwestern watersheds with contrasting land uses, the change in character of stream DOC during storms, and the usability of DOC as a hydrologic tracer in artificially drained landscapes of the Midwest are investigated. Major cation/DOC concentrations, and DOC specific UV absorbance (SUVA) and fluorescence index (FI) were monitored at 2–4 h intervals during three spring storms. Although DOC is less aromatic in the mixed land use watershed than in the agricultural watershed, land use has little impact on stream DOC concentration during storms. For both watersheds, DOC concentration follows discharge, and SUVA and FI values indicate an increase in stream DOC aromaticity and lignin content during storms. The comparison of DOC/major cation flushing dynamics indicates that DOC is mainly exported via overland flow/macropore flow. In both watersheds, the increase in DOC concentration in the streams during storms corresponds to a shift in the source of DOC from DOC originating from mineral soil layers of the soil profile at baseflow, to DOC originating from surficial soil layers richer in aromatic substances and lignin during storms. Results also suggest that DOC, SUVA and FI could be used as hydrologic tracers in artificially drained landscapes of the Midwest. These results underscore the importance of sampling streams for DOC during high flow periods in order to understand the fate of DOC in streams.  相似文献   

17.
Abstract Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests of the Great Lakes Region commonly receive elevated levels of atmospheric nitrate (NO3) deposition, which can alter belowground carbon (C) cycling. Past research has demonstrated that chronic experimental NO3 deposition (3 g N m−2 y−1 above ambient) elicits a threefold increase in the leaching loss of dissolved organic carbon (DOC). Here, we used DOC collected from tension-cup lysimeters to test whether increased DOC export under experimental NO3 deposition originated from forest floor or mineral soil organic matter (SOM). We used DOC radiocarbon dating to quantify C sources and colorimetric assays to measure DOC aromaticity and soluble polyphenolic content. Our results demonstrated that DOC exports are primarily derived from new C (<50-years-old) in the forest floor under both ambient and experimental NO3 deposition. Experimental NO3 deposition increased soluble polyphenolic content from 25.03 ± 4.26 to 49.19 ± 4.23 μg phenolic C mg DOC−1, and increased total aromatic content as measured by specific UV absorbance. However, increased aromatic compounds represented a small fraction (<10%) of the total observed increased DOC leaching. In combination, these findings suggest that experimental NO3 deposition has altered the production or retention as well as phenolic content of DOC formed in forest floor, however exact mechanisms are uncertain. Further elucidation of the mechanism(s) controlling enhanced DOC leaching is important for understanding long-term responses of Great Lakes forests to anthropogenic N deposition and the consequences of those responses for aquatic ecosystems.  相似文献   

18.
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.  相似文献   

19.
We studied the effect of nutrient inputs on the carbon (C) budget of rocky shore communities using a set of eight large experimental mesocosms. The mesocosms received a range of inorganic nitrogen (N) and phosphorus (P) additions, at an N:P ratio of 16. These additions were designed to elevate the background concentration, relative to that in eutrophic Oslofjord (Norway) waters, by 1, 2, 4, 8, 16, 32 μmol dissolved inorganic nitrogen (DIN)l−1 (and the corresponding P increase). Two unamended mesocosms were used as controls. The nutrients were added continuously for 27 months before gross primary production (GPP), respiration (R), net community production (NCP), and dissolved organic carbon (DOC) production were assessed for the dominant algal species (Fucus serratus) and for the whole experimental ecosystem. Inputs and outputs of DOC and particulate organic carbon (POC) from the mesocosms were also quantified. The F. serratus communities were generally autotrophic (average P/R ratio = 1.33 ± 0.12), with the GPP independent of the nutrient inputs to the mesocosms, and maintained a high net DOC production during both day (0.026 ± 0.008 g C m−2 h−1) and night (0.015 ± 0.004 g C m−2 h−1). All the experimental rocky shore ecosystems were autotrophic (P/R ratio = 2.04 ± 0.28), and neither macroalgal biomass nor production varied significantly with increasing nutrient inputs. Most of the excess production from these autotrophic ecosystems was exported from the systems as DOC, which accounted for 69% and 58% of the NCP of the dominant community and the experimental ecosystem, respectively, the rest being lost as POC. High DOC release and subsequent export from the highly energetic environments occupied by rocky shore communities may prevent the development of eutrophication symptoms and render these communities resistant to eutrophication. Received 10 October 2001; accepted 18 July 2002.  相似文献   

20.
Forest soils are frequently subjected to dry–wet cycles, but little is known about the effects of repeated drying and wetting and wetting intensity on fluxes of , and DOC. Here, undisturbed soil columns consisting of organic horizons (O columns) and organic horizons plus mineral soil (O + M columns) from a mature Norway spruce stand at the Fichtelgebirge; Germany, were repeatedly desiccated and subsequently wetted by applying different amounts of water (8, 20 and 50 mm day−1) during the initial wetting phase. The constantly moist controls were not desiccated and received 4 mm day−1 during the entire wetting periods. Cumulative inorganic N fluxes of the control were 12.4 g N m−2 (O columns) and 11.4 g N m−2 (O + M columns) over 225 days. Repeated drying and wetting reduced cumulative and fluxes of the O columns by 47–60 and 76–85%, respectively. Increasing (0.6–1.1 g N m−2) and decreasing fluxes (7.6–9.6 g N m−2) indicate a reduction in net nitrification in the O + M columns. The negative effect of dry–wet cycles was attributed to reduced net N mineralisation during both the desiccation and wetting periods. The soils subjected to dry–wet cycles were considerably drier at the final wetting period, suggesting that hydrophobicity of soil organic matter may persist for weeks or even months. Based on results from this study and from the literature we hypothesise that N mineralisation is mostly constrained by hydrophobicity in spruce forests during the growing season. Wetting intensity did mostly not alter N and DOC concentrations and fluxes. Mean DOC concentrations increased by the treatment from 45 mg l−1 to 61–77 mg l−1 in the O tlsbba columns and from 12 mg l−1 to 21–25 mg l−1 in the O + M columns. Spectroscopic properties of DOC from the O columns markedly differed within each wetting period, pointing to enhanced release of rather easily decomposable substrates in the initial wetting phases and the release of more hardly decomposable substrates in the final wetting phases. Our results suggest a small additional DOC input from organic horizons to the mineral soil owing to drying and wetting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号