首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birth sex ratios relate to mare condition at conception in Kaimanawa horses   总被引:3,自引:3,他引:0  
Several hypotheses have been proposed to explain variation inbirth sex ratios, based on the premise that variation is expectedwhen the profitability of raising sons and daughters variesbetween individual parents. We tested the Trivers-Willard hypothesisthat mothers in better condition produce relatively more sonsand that mothers in poorer condition produce relatively more daughterswhen male reproductive success is more variable. We examinedbirth sex ratios in relation to mare body condition at conceptionin horses in which male reproductive success is differentiallyhelped by slight advantages in condition. Horses meet the assumptionsof the Trivers-Willard hypothesis better than many species onwhich it has been tested and in which sex ratio biases are notconfounded by sexual size dimorphism such that one sex is more likelyto die in utero in females in poor condition. Mares that hada female foal were in poorer condition at conception than thosethat had a male foal, and mares that had foals of differentsexes in different years were in significantly poorer conditionwhen they conceived their female foal. There was no relationshipbetween offspring sex and mid-gestation condition, and therewas no difference in foaling rates in relation to body conditionat conception. Consequently, sex ratio deviations are not explainedby fetal loss in utero. Furthermore, differential fetal lossof the less viable sex cannot explain the greater proportionof males produced by mares in better condition. Therefore, ourresults suggest that sex ratio modification occurs at conceptionin wild horses.  相似文献   

2.
How mothers allocate resources to offspring is central to understanding life history strategies. High quality mothers are predicted to favour investment in sons over daughters when to do so increases inclusive fitness. This is the case in ungulates with polygynous mating systems, where reproductive success is more variable among males than females, but information is scarce on sex allocation in less polygynous species. Here, for the weakly dimorphic roe deer, we show that as maternal capacity to invest increases, mothers increase allocation to daughters more than to sons, so that relative allocation to daughters increases markedly with increasing maternal quality. This cannot be explained by a between sex difference in growth priority, hence we conclude that this is evidence for active maternal discrimination. Further, we demonstrate that condition differences between offspring persist to adulthood. For high quality mothers of weakly polygynous species, daughters may be more valuable than sons.  相似文献   

3.
Sex allocation theory assumes that offspring sex (son vs. daughter) has consequences for maternal fitness. The most compelling experiment to test this theory would involve manipulating offspring sex and measuring the fitness consequences of having the “wrong” sex. Unfortunately, the logistical challenges of such an experiment limit its application. In tammar wallabies (Macropus eugenii), previous evidence suggests that mothers in good body condition are more likely to produce sons compared to mothers in poor condition, in support of the Trivers-Willard Hypothesis (TW) of condition-dependent sex allocation. More recently, we have found in our population of tammar wallabies that females with seemingly poor access to resources (based on condition loss over the dry summer) are more likely to produce sons, consistent with predictions from the Local Resource Competition (LRC) hypothesis, which proposes that production of sons or daughters is driven by the level of potential competition between mothers and philopatric daughters. We conducted a cross-fostering experiment in free-ranging tammar wallabies to disassociate the effects of rearing and birthing offspring of each sex. This allowed us to test the prediction of the LRC hypothesis that rearing daughters reduces the future direct fitness of mothers post-weaning and the prediction of the TW hypothesis that rearing sons requires more energy during lactation. Overall, we found limited costs to the mother of rearing the “wrong” sex, with switching of offspring sex only reducing the likelihood of a mother having a pouch young the following year. Thus, we found some support for both hypotheses in that rearing an unexpected son or an unexpected daughter both lead to reduced future maternal fitness. The study suggests that there may be context-specific costs associated with rearing the “wrong” sex.  相似文献   

4.
Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment.  相似文献   

5.
Experimental alteration of litter sex ratios in a mammal   总被引:1,自引:0,他引:1  
Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. Studies investigating sex ratio variation in mammals, including humans, have obtained notoriously inconsistent results, except when maternal condition is measured around conception. Several mechanisms for sex ratio adjustment have been proposed. Here, we test the hypothesis that glucose concentrations around conception influence sex ratios. The change in glucose levels resulted in a change in sex ratios, with more daughters being born to females with experimentally lowered glucose, and with the change in glucose levels being more predictive than the glucose levels per se. We provide evidence for a mechanism, which, in tandem with other mechanisms, could explain observed sex ratio variation in mammals.  相似文献   

6.
The Trivers–Willard hypothesis predicts the unequal parental investment between daughters and sons, depending on maternal condition and offspring reproductive potential. Specifically, in polygynous populations where males have higher reproductive variance than females, it predicts that mothers in good condition will invest more in sons, whereas mothers in poor condition will invest more in daughters. Previous studies testing this hypothesis focused on behavioral investment, whereas few examined biological investment. This study investigates the Trivers–Willard hypothesis on both behavioral and biological parental investment by examining breastfeeding frequencies and breast milk fat concentrations. Data from exclusively breastfeeding mothers in Northern Kenya were used to test hypotheses: Economically sufficient mothers will breastfeed sons more frequently than daughters, whereas poor mothers will breastfeed daughters more frequently than sons, and economically sufficient mothers will produce breast milk with higher fat concentration for sons than daughters, whereas poor mothers will produce breast milk with higher fat concentration for daughters than sons. Linear regression models were applied, using breastfeeding frequency or log‐transformed milk fat as the dependent variable, and offspring's sex (son = 1/daughter = 0), socioeconomic status (higher = 1/lower = 0), and the sex‐wealth interaction as the predictors, controlling for covariates. Our results only supported the milk fat hypothesis: infant's sex and socioeconomic status interacted (P = 0.014, n = 72) in their relation with milk fat concentration. The model estimated that economically sufficient mothers produced richer milk for sons than daughters (2.8 vs. 0.6 gm/dl) while poor mothers produced richer milk for daughters than sons (2.6 vs. 2.3 gm/dl). Further research on milk constituents in relation to offspring's sex is warranted. Am J Phys Anthropol , 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
In species where offspring fitness is sex-specifically influenced by maternal reproductive condition, sex allocation theory predicts that poor-quality mothers should invest in the evolutionarily less expensive sex. Despite an accumulation of evidence that mothers can sex-specifically modulate investment in offspring in relation to maternal quality, few mechanisms have been proposed as to how this is achieved. We explored a hormonal mechanism for sex-biased maternal investment by measuring and experimentally manipulating baseline levels of the stress hormone corticosterone in laying wild female European starlings (Sturnus vulgaris) and examining effects on sex ratio and sex-specific offspring phenotype adjustment. Here we show that baseline plasma corticosterone is negatively correlated with energetic body condition in laying starlings, and subsequent experimental elevation of maternal baseline plasma corticosterone increased yolk corticosterone without altering maternal condition or egg quality per se. Hormonal elevation resulted in the following: female-biased hatching sex ratios (caused by elevated male embryonic mortality), lighter male offspring at hatching (which subsequently grew more slowly during postnatal development), and lower cell-mediated immune (phytohemagglutinin) responses in males compared with control-born males; female offspring were unaffected by the manipulation in both years of the study. Elevated maternal corticosterone therefore resulted in a sex-biased adjustment of offspring quality favorable to female offspring via both a sex ratio bias and a modulation of male phenotype at hatching. In birds, deposition of yolk corticosterone may benefit mothers by acting as a bet-hedging strategy in stochastic environments where the correlation between environmental cues at laying (and therefore potentially maternal condition) and conditions during chick-rearing might be low and unpredictable. Together with recent studies in other vertebrate taxa, these results suggest that maternal stress hormones provide a mechanistic link between maternal quality and sex-biased maternal investment in offspring.  相似文献   

8.
Theory predicts the optimal timing of sex change will be the age or size at which half of an individual''s expected fitness comes through reproduction as a male and half through reproduction as a female. In this way, sex allocation across the lifetime of a sequential hermaphrodite parallels the sex allocation of an outbreeding species exhibiting a 1∶1 ratio of sons to daughters. However, the expectation of a 1∶1 sex ratio is sensitive to variation in individual condition. If individuals within a population vary in condition, high-condition individuals are predicted to make increased allocations to the sex with the higher variance in reproductive success. An oft-cited example of this effect is seen in red deer, Cervus elaphus, in which mothers of high condition are more likely to produce sons, while those in low condition are more likely to produce daughters. Here, we show that individual condition is predicted to similarly affect the pattern of sex allocation, and thus the allocation of reproductive effort, in sequential hermaphrodites. High-condition sex-changers are expected to obtain more than half of their fitness in the high-payoff second sex and, as a result, are expected to reduce the allocation of reproductive effort in the initial sex. While the sex ratio in populations of sequential hermaphrodites is always skewed towards an excess of the initial sex, condition dependence is predicted to increase this effect.  相似文献   

9.

Background

Natural selection should favour the ability of mothers to adjust the sex ratio of offspring in relation to the offspring''s potential reproductive success. In polygynous species, mothers in good condition would be advantaged by giving birth to more sons. While studies on mammals in general provide support for the hypothesis, studies on humans provide particularly inconsistent results, possibly because the assumptions of the model do not apply.

Methodology/Principal Findings

Here, we take a subset of humans in very good condition: the Forbe''s billionaire list. First, we test if the assumptions of the model apply, and show that mothers leave more grandchildren through their sons than through their daughters. We then show that billionaires have 60% sons, which is significantly different from the general population, consistent with our hypothesis. However, women who themselves are billionaires have fewer sons than women having children with billionaires, suggesting that maternal testosterone does not explain the observed variation. Furthermore, paternal masculinity as indexed by achievement, could not explain the variation, since there was no variation in sex ratio between self-made or inherited billionaires.

Conclusions/Significance

Humans in the highest economic bracket leave more grandchildren through sons than through daughters. Therefore, adaptive variation in sex ratios is expected, and human mothers in the highest economic bracket do give birth to more sons, suggesting similar sex ratio manipulation as seen in other mammals.  相似文献   

10.

Background  

Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid (PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio.  相似文献   

11.
1.  Optimal parental sex allocation depends on the balance between the costs of investing into sons vs. daughters and the benefits calculated as fitness returns. The outcome of this equation varies with the life history of the species, as well as the state of the individual and the quality of the environment.
2.  We studied maternal allocation and subsequent fecundity costs of bank voles, Myodes glareolus , by manipulating both the postnatal sex ratio (all-male/all-female litters) and the quality of rearing environment (through manipulation of litter size by −2/+2 pups) of their offspring in a laboratory setting.
3.  We found that mothers clearly biased their allocation to female rather than male offspring regardless of their own body condition. Male pups had a significantly lower growth rate than female pups, so that at weaning, males from enlarged litters were the smallest. Mothers produced more milk for female litters and also defended them more intensively than male offspring.
4.  The results agree with the predictions based on the bank vole life history: there will be selection for greater investment in daughters rather than sons, as a larger size seems to be more influencial for female reproductive success in this species. Our finding could be a general rule in highly polygynous, but weakly dimorphic small mammals where females are territorial.
5.  The results disagree with the narrow sense Trivers & Willard hypothesis, which states that in polygynous mammals that show higher variation in male than in female reproductive success, high-quality mothers are expected to invest more in sons than in daughters.  相似文献   

12.
There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms.  相似文献   

13.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

14.
Temperature-dependent sex determination (TSD) has evolved independently in at least two lineages of viviparous Australian scincid lizards, but its adaptive significance remains unclear. We studied a montane lizard species (Eulamprus heatwolei) with TSD. Our data suggest that mothers can modify the body sizes of their offspring by selecting specific thermal regimes during pregnancy (mothers with higher and more stable temperatures produced smaller offspring), but cannot influence sons versus daughters differentially in this way. A field mark-recapture study shows that optimal offspring size differs between the sexes: larger body size at birth enhanced the survival of sons but reduced the survival of daughters. Thus, a pregnant female can optimize the fitness of either her sons or her daughters (via yolk allocation and thermoregulation), but cannot simultaneously optimize both. One evolutionary solution to reduce this fitness cost is to modify the sex-determining mechanism so that a single litter consists entirely of either sons or daughters; TSD provides such a mechanism. Previous work has implicated a sex difference in optimal offspring size as a selective force for TSD in turtles. Hence, opposing fitness determinants of sons and daughters may have favored evolutionary transitions from genetic sex determination to TSD in both oviparous turtles and viviparous lizards.  相似文献   

15.
Genetic variation can be beneficial to one sex yet harmful when expressed in the other—a condition referred to as sexual antagonism. Because X chromosomes are transmitted from fathers to daughters, and sexually antagonistic fitness variation is predicted to often be X-linked, mates of relatively low-fitness males might produce high-fitness daughters whereas mates of high-fitness males produce low-fitness daughters. Such fitness consequences have been predicted to influence the evolution of female mating biases and the offspring sex ratio. Females might evolve to prefer mates that provide good genes for daughters or might adjust offspring sex ratios in favor of the sex with the highest relative fitness. We test these possibilities in a laboratory-adapted population of Drosophila melanogaster , and find that females preferentially mate with males carrying genes that are deleterious for daughters. Preferred males produce equal numbers of sons and daughters, whereas unpreferred males produce female-biased sex ratios. As a consequence, mean offspring fitness of unpreferred males is higher than offspring fitness of preferred males. This observation has several interesting implications for sexual selection and the maintenance of population genetic variation for fitness.  相似文献   

16.
Trivers & Willard (TW) hypothesized that evolution would favour deviations from the population sex ratio in response to parental condition: parents in good condition would have more sons and parents in poor condition would have more daughters. We analyse the universe of US linked births and infant deaths to white mothers 1983-2001, covering 48 million births and 310,000 deaths. We find that (i) married, better educated and younger mothers bore more sons and (ii) infant deaths were more male if the mother was unmarried and young. Our findings highlight the potential role of offspring sex ratio as an indicator of maternal status, and the role of infant mortality in shaping a TW pattern in the breeding population.  相似文献   

17.
Sex allocation theory predicts that mothers in good conditionshould bias their brood sex ratio in response to the differentialbenefits obtained from increased maternal expenditure in sonsand daughters. Although there is well-documented variationof offspring sex ratios in several bird species according tomaternal condition, the assumption that maternal condition has different fitness consequences for male and for female offspringremains unclear. The blue-footed booby (Sula nebouxii) is asexually size-dimorphic seabird, with females approximately31% heavier than males. It has been reported that the sex ratiois male biased in years with poor feeding conditions, whichsuggests that either females adjust their sex ratio in accordancewith their condition or that they suffer differential brood mortality before their sex can be determined. In this studyI tested whether the condition of mothers affected their daughters'fitness more than their sons' fitness. I manipulated maternalinvestment by trimming the flight feathers and thereby handicappingfemales during the chick-rearing period. Adult females in thehandicapped group had a poorer physical condition at end ofchick growth, as measured by mass and by the residuals of masson wing length compared to control birds. Female chicks wereaffected by the handicapping experiment, showing a lower massand shorter wing length (reduced approximately 8% in both measures)than controls. However, this effect was not found in male chicks.Hatching sex ratios were also related to female body conditionat hatching. The brood sex ratio of females in poor conditionwas male biased but was female biased for females in good condition.Overall, these results suggest that the variation in the sexratio in blue-footed boobies is an adaptive response to thedisadvantage daughters face from being reared under poor conditions.  相似文献   

18.
The Trivers–Willard hypothesis (TWH) predicts that parents will bias their sex ratio toward sons when in good condition and toward daughters when in poor condition. Many human studies have tested the related hypothesis that parents' bias allocation of resources to existing sons and daughters according to the same principle. The present study used time diary and self-report data from the parents of 3200 children in the US to test the hypothesis that as status increases, parents will allocate more resources to sons vs. daughters. It finds no evidence that higher-status parents invest more in sons or that lower status parents invest more in daughters. This finding illustrates the specificity of situations in which the TWH effects should be expected. Only certain types of parental investment — such as protection and a bias in the sex ratio — may have been selected to vary according to parental condition. Optimal allocation of resources after the child is born, however, is achieved not by the simple bias predicted by the TWH, but by allocating resources among offspring in ways that yield the largest marginal inclusive fitness gains.  相似文献   

19.
Adaptive sex allocation has frequently been studied in sexually size dimorphic species, but far less is known about patterns of sex allocation in species without pronounced sexual size dimorphism. Parental optimal investment can be predicted under circumstances in which sons and daughters differ in costs and/or fitness returns. In common terns Sterna hirundo, previous studies suggest that sons are the more costly sex to produce and rear. We investigated whether hatching and fledging sex ratio and sex‐specific chick mortality correlated with the ecological environment (laying date, clutch size, hatching order and year quality) and parental traits (condition, arrival date, experience and breeding success), over seven consecutive years. Population‐wide sex ratios and sex‐specific mortality did not differ from parity, but clutch size, mass of the father, maternal breeding experience and to some extent year quality correlated with hatching sex ratio. The proportion of sons tended to increase in productive years and when the father was heavier, suggesting the possibility that females invest more in sons when the environmental and the partner conditions are good. The proportion of daughters increased with clutch size and maternal breeding experience, suggesting a decline in breeding performance or a resources balance solved by producing more of the cheaper sex. No clear patterns of sex‐specific mortality were found, neither global nor related to parental traits. Our results suggest lines for future studies on adaptive sex allocation in sexually nearly monomorphic species, where adjustment of sex ratio related to parental factors and differential allocation between the offspring may also occur.  相似文献   

20.
In polygynous, sexual dimorphic species with higher variance in male reproductive success compared with females, females are expected to invest more heavily in sons than daughters within the constraints imposed by their physical condition (Science 1973; 179:90). Mothers in good condition, usually those of high rank, should produce more sons than females in poor condition or of low rank. We investigated sex allocation and sex‐biased maternal investment in a population of wild Hanuman langurs using rank and group size as approximations of female physical condition. Our results show that reproductive costs of sons were higher with both significantly longer interbirth intervals following male births and longer lactational periods for sons. Not in all groups did analyses of rank‐dependent sex allocation reveal the expected pattern of high‐ranking mothers producing more sons. However, sex ratio was significantly influenced by group size, with females from larger groups, i.e., in worse physical condition, producing a daughter‐biased sex ratio. In fact, only females of population‐wide superior physical condition can be expected to produce sons, because in Hanuman langurs males disperse and compete population‐wide. Thus, our results support the Trivers–Willard model and may explain the mixed evidence accruing from studies of single groups. We present a graphical model of how group size and dominance‐related differences in energy gain may influence sex allocation under different competitive regimes relative to overall resource availability. Tests of adaptive sex allocation models should consider whether reproductive competition of the preferred sex takes place primarily within a group or within the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号