首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.  相似文献   

2.
For a variety of coral species, we have studied the molecular origin of their coloration to assess the contributions of host and symbiont pigments. For the corals Catalaphyllia jardinei and an orange-emitting color morph of Lobophyllia hemprichii, the pigments belong to a particular class of green fluorescent protein-like proteins that change their color from green to red upon irradiation with approximately 400 nm light. The optical absorption and emission properties of these proteins were characterized in detail. Their spectra were found to be similar to those of phycoerythrin from cyanobacterial symbionts. To unambiguously determine the molecular origin of the coloration, we performed immunochemical studies using double diffusion in gel analysis on tissue extracts, including also a third coral species, Montastrea cavernosa, which allowed us to attribute the red fluorescent coloration to green-to-red photoconvertible fluorescent proteins. The red fluorescent proteins are localized mainly in the ectodermal tissue and contribute up to 7.0% of the total soluble cellular proteins in these species. Distinct spatial distributions of green and cyan fluorescent proteins were observed for the tissues of M. cavernosa. This observation may suggest that differently colored green fluorescent protein-like proteins have different, specific functions. In addition to green fluorescent protein-like proteins, the pigments of zooxanthellae have a strong effect on the visual appearance of the latter species.  相似文献   

3.
In a variety of organisms, adult gonads contain several specialized somatic cells that regulate and support the development of germline cells. In stony corals, the characteristics and functions of gonadal somatic cells remain largely unknown. No molecular markers are currently available that allow for the identification and enrichment of gonadal somatic cells in corals. Here, we showed that the testicular somatic cells of a stony coral, Euphyllia ancora, express an endogenous green fluorescent protein (GFP). Fluorescence microscopy showed that, in contrast to the endogenous expression of the red fluorescent protein of E. ancora ovaries that we have previously reported, the testes displayed a distinct green fluorescence. Molecular identification and spectrum characterization demonstrated that E. ancora testes expressed a GFP (named EaGFP) that is a homolog of the GFP from the jellyfish Aequorea victoria and that possesses an excitation maximum of 506 nm and an emission maximum of 514 nm. Immunohistochemical analyses revealed that the testicular somatic cells, but not the germ cells, expressed EaGFP. EaGFP was enclosed within one or a few granules in the cytoplasm of testicular somatic cells, and the granule number decreased as spermatogenesis proceeded. We also showed that testicular somatic cells could be enriched by using endogenous GFP as an indicator. The present study not only revealed one of the unique cellular characteristics of coral testicular cells but also established a technical basis for more in‐depth investigations of the function of testicular somatic cells in spermatogenesis in future studies.  相似文献   

4.
We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our methodology which includes isolation, spectral characterisation, stability testing, gel-based separation and mass spectrometric identification was optimised on samples collected during the Danish Galathea 3 expedition. Four corals of the Fungia, Sarcophyton and Acropora species emitting green fluorescence were tested. Each of the fluorescent extracts behaves differently under denaturing conditions but complete fluorescence loss was not observed. Optimised electrophoretic conditions yielded effective separation of active fluorescent proteins in both 1DE and 2DE. Mass spectrometric analysis of the proteins in the fluorescent spots excised directly from unstained 2DE gels provides sequence information that might be sufficient to design degenerate primers for gene cloning. Identified fluorescent proteins are in agreement with the coral species determined by visual examination of the samples. The presented methodology is a viable alternative to direct gene cloning for the discovery of novel fluorescent proteins and will be further validated on other samples collected during the Galathea 3 expedition.  相似文献   

5.
Symbiotic reef corals occupy the entire photic zone; however, most species have distinct zonation patterns within the light intensity gradient. It is hypothesized that the presence of specific symbionts adapted to different light regimes may determine the vertical distribution of particular hosts. We have tested this hypothesis by genetic and in situ physiological analyses of the algal populations occupying two dominant eastern Pacific corals, over their vertical distribution in the Gulf of California. Our findings indicate that each coral species hosts a distinct algal taxon adapted to a particular light regime. The differential use of light by specific symbiotic dinoflagellates constitutes an important axis for niche diversification and is sufficient to explain the vertical distribution patterns of these two coral species.  相似文献   

6.
Green fluorescent protein (GFP) and its relatives (GFP protein family) have been isolated from marine organisms such as jellyfish and corals that belong to the phylum Cnidaria (stinging aquatic invertebrates). They are intrinsically fluorescent proteins. In search of new members of the family of green fluorescent protein family, we identified a non-fluorescent chromoprotein from the Cnidopus japonicus species of sea anemone that possesses 45% sequence identity to dsRed (a red fluorescent protein). This newly identified blue color protein has an absorbance maximum of 610 nm and is hereafter referred to as cjBlue. Determination of the cjBlue 1.8 A crystal structure revealed a chromophore comprised of Gln(63)-Tyr(64)-Gly(65). The ring stacking between Tyr(64) and His(197) stabilized the cjBlue trans chromophore conformation along the Calpha2-Cbeta2 bond of 5-[(4-hydroxyphenyl)methylene]-imidazolinone, which closely resembled that of the "Kindling Fluorescent Protein" and Rtms5. Replacement of Tyr(64) with Leu in wild-type cjBlue produced a visible color change from blue to yellow with a new absorbance maximum of 417 nm. Interestingly, the crystal structure of the yellow mutant Y64L revealed two His(197) imidazole ring orientations, suggesting a flip-flop interconversion between the two conformations in solution. We conclude that the dynamics and structure of the chromophore are both essential for the optical appearance of these color proteins.  相似文献   

7.
Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.  相似文献   

8.
We have cloned a gene which encodes a fluorescent protein from the stony coral, Galaxeidae. This protein absorbs light maximally at 492 nm and emits green light at 505 nm, and as a result, we have designated it "Azami-Green (AG)." Despite sharing a similar spectral profile with enhanced green fluorescent protein (EGFP) (Clontech), the most popular variant of the Aequorea victoria green fluorescent protein, the identity between these two proteins at the amino acid level is only 5.7%. However, since AG has a high extinction coefficient, fluorescence quantum yield, and acid stability, it produces brighter green fluorescence in cultured cells than EGFP. Similar to other fluorescent proteins isolated from coral animals, AG forms a tight tetrameric complex, resulting in poor labeling of subcellular structures such as the plasma membrane and mitochondria. We have converted tetrameric AG into a monomeric form by the introduction of three amino acid substitutions, which were recently reported to be effective for monomerizing the red fluorescent protein from Discosoma coral (DsRed, Clontech). The resultant monomeric AG allowed for efficient fluorescent labeling of all of the subcellular structures and proteins tested while retaining nearly all of the brightness of the original tetrameric form. Thus, monomeric AG is a useful monomeric green-emitting fluorescent protein comparable to EGFP.  相似文献   

9.
Natural pigments are normally products of complex biosynthesis pathways where many different enzymes are involved. Corals and related organisms of class Anthozoa represent the only known exception: in these organisms, each of the host-tissue colors is essentially determined by a sequence of a single protein, homologous to the green fluorescent protein (GFP) from Aequorea victoria. This direct sequence-color linkage provides unique opportunity for color evolution studies. We previously reported the general phylogenetic analysis of GFP-like proteins, which suggested that the present-day diversity of reef colors originated relatively recently and independently within several lineages. The present work was done to get insight into the mechanisms that gave rise to this diversity. Three colonies of the great star coral Montastraea cavernosa (Scleractinia, Faviida) were studied, representing distinct color morphs. Unexpectedly, these specimens were found to express the same collection of GFP-like proteins, produced by at least four, and possibly up to seven, different genetic loci. These genes code for three basic colors-cyan, green, and red-and are expressed differently relative to one another in different morphs. Phylogenetic analysis of the new sequences indicated that the three major gene lineages diverged before separation of some coral families. Our results suggest that color variation in M. cavernosa is not a true polymorphism, but rather a manifestation of phenotypic plasticity (polyphenism). The family level depth of its evolutionary roots indicates that the color diversity is adaptively significant. Relative roles of gene duplication, gene conversion, and point mutations in its evolution are discussed.  相似文献   

10.
Green fluorescent proteins (GFP) are widely used in vivo molecular markers. These proteins are particularly resistant, and maintain function, under a variety of cellular conditions such as pH extremes and elevated temperatures. Green fluorescent proteins are also abundant in several groups of marine invertebrates including reef-forming corals. While molecular oxygen is required for the post-translational maturation of the protein, mature GFPs are found in corals where hyperoxia and reactive oxygen species (ROS) occur due to the photosynthetic activity of algal symbionts. In vitro spin trapping electron paramagnetic resonance and spectrophotometric assays of superoxide dismutase (SOD)-like enzyme activity show that wild type GFP from the hydromedusa, Aequorea victoria, quenches superoxide radicals (O2*-)) and exhibits SOD-like activity by competing with cytochrome c for reaction with O2*-. When exposed to high amounts of O2*- the SOD-like activity and protein structure of GFP are altered without significant changes to the fluorescent properties of the protein. Because of the distribution of fluorescent proteins in both the epithelial and gastrodermal cells of reef-forming corals we propose that GFP, and possibly other fluorescent proteins, can provide supplementary antioxidant protection.  相似文献   

11.
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.  相似文献   

12.
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50–60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40–100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.  相似文献   

13.
Sexuality and reproductive mode are two fundamental life-history traits that exhibit largely unexplained macroevolutionary patterns among the major groups of multicellular organisms. For example, the cnidarian class Anthozoa (corals and anemones) is mainly comprised of gonochoric (separate sex) brooders or spawners, while one order, Scleractinia (skeleton-forming corals), appears to be mostly hermaphroditic spawners. Here, using the most complete phylogeny of scleractinians, we reconstruct how evolutionary transitions between sexual systems (gonochorism versus hermaphrodism) and reproductive modes (brooding versus spawning) have generated large-scale taxonomic patterns in these characters. Hermaphrodites have independently evolved in three large, distantly related lineages consisting of mostly reef-building species. Reproductive mode in corals has evolved at twice the rate of sexuality, while the evolution of sexuality has been heavily biased: gonochorism is over 100 times more likely to be lost than gained, and can only be acquired by brooders. This circuitous evolutionary pathway accounts for the prevalence of hermaphroditic spawners among reef-forming scleractinians, despite their ancient gonochoric heritage.  相似文献   

14.
BACKGROUND: Development of spectrally distinct green fluorescent protein (GFP) variants has allowed for simultaneous flow cytometric detection of two different colored mutants expressed in a single cell. However, the dual-laser methods employed in such experiments are not widely applicable since they require a specific, expensive laser, and single-laser analysis at 488 nm exhibits considerable spectral overlap. The purpose of this work was to evaluate detection of enhanced cyan fluorescent protein (ECFP) in combination with the enhanced green (EGFP) and enhanced yellow (EYFP) fluorescent proteins by flow cytometry. METHODS: Cells transfected with expression constructs for EGFP, EYFP, or ECFP were analyzed by flow cytometry using excitation wavelengths at 458, 488, or 514 nm. Fluorescence signals were separated with a custom optical filter configuration: 525 nm shortpass and 500 nm longpass dichroics; 480/30 (ECFP), 510/20 (EGFP) and 550/30 (EYFP) bandpasses; 458 nm laser blocking filters. RESULTS: All three fluorescent proteins when expressed individually or in combination in living cells were excited by the 458 nm laser line and their corresponding signals could be electronically compensated in real time. CONCLUSIONS: This method demonstrates the detection of three fluorescent proteins expressed simultaneously in living cells using single laser excitation and is applicable for use on flow cytometers equipped with a tunable argon ion laser.  相似文献   

15.
GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae) and pink chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of structural determinants of different colors.  相似文献   

16.
Localization-based superresolution optical imaging is rapidly gaining popularity, yet limited availability of genetically encoded photoactivatable fluorescent probes with distinct emission spectra impedes simultaneous visualization of multiple molecular species in living cells. We introduce PAmKate, a monomeric photoactivatable far-red fluorescent protein, which facilitates simultaneous imaging of three photoactivatable proteins in mammalian cells using fluorescence photoactivation localization microscopy (FPALM). Successful probe identification was achieved by measuring the fluorescence emission intensity in two distinct spectral channels spanning only ∼100 nm of the visible spectrum. Raft-, non-raft-, and cytoskeleton-associated proteins were simultaneously imaged in both live and fixed fibroblasts coexpressing Dendra2-hemagglutinin, PAmKate-transferrin receptor, and PAmCherry1-β-actin fusion constructs, revealing correlations between the membrane proteins and membrane-associated actin structures.  相似文献   

17.
Immune receptors are omnipresent in multicellular organisms and comprise a vast array of molecular structures that serve to detect and eliminate pathogenic threats. The immunoglobulin (Ig) domain, a central structural feature of the antigen binding receptors that mediate adaptive immunity in jawed vertebrates, appears to play a particularly widespread role in metazoan immunity. Recent reports also have implicated Ig domains in the immune responses of protostomes such as flies and snails. Our research has focused on understanding the utilization of the Ig domain in the immunity of chordates and has identified numerous multigene families of Ig domain-containing receptors that appear to serve roles distinct from the adaptive antigen-binding receptors. Three families have received particular focus: novel immune-type receptors (NITRs) of bony fish, modular domain immune-type receptors (MDIRs) of cartilaginous fish and variable region-containing chitin-binding proteins (VCBPs) of amphioxus. NITRs and MDIRs are encoded in large multigene families of highly diversified forms and exhibit a striking dichotomy of an apparently ubiquitous presence but extensive diversification of sequence both within and among the particular taxonomic groups in which they are found. Crystal structures of VCBPs and NITRs demonstrate significant similarity to those of antigen-binding receptors but at the same time exhibit key differences that imply acquisition of separate and distinct ligand-binding functions. The tremendous plasticity of the Ig domain makes it a strong focus for studies of evolutionary events that have shaped modern integrated immune systems. Current data are consistent with a model of extremely rapid emergence and divergence of immune receptors, perhaps specific to individual species, as organisms contend with environments in which pathogens are continually selected for variation of their own molecular signatures.  相似文献   

18.
Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.  相似文献   

19.
20.
Color morphs of the temperate, nonsymbiotic corallimorpharian Corynactis californica show variation in pigment pattern and coloring. We collected seven distinct color morphs of C. californica from subtidal locations in Monterey Bay, California, and found that tissue– and color–morph-specific expression of at least six different genes is responsible for this variation. Each morph contains at least three to four distinct genetic loci that code for these colors, and one morph contains at least five loci. These genes encode a subfamily of new GFP-like proteins, which fluoresce across the visible spectrum from green to red, while sharing between 75% to 89% pairwise amino-acid identity. Biophysical characterization reveals interesting spectral properties, including a bright yellow protein, an orange protein, and a red protein exhibiting a “fluorescent timer” phenotype. Phylogenetic analysis indicates that the FP genes from this species evolved together but that diversification of anthozoan fluorescent proteins has taken place outside of phylogenetic constraints, especially within the Corallimorpharia. The discovery of more examples of fluorescent proteins in a non-bioluminescent, nonsymbiotic anthozoan highlights possibilities of adaptive ecological significance unrelated to light regulation for algal symbionts. The patterns and colors of fluorescent proteins in C. californica and similar species may hold meaning for organisms that possess the visual pigments to distinguish them. Christine E. Schnitzler and Robert J. Keenan contributed equally to this work. Data deposition footnote: The GenBank () accession numbers for the genes and gene products discussed in this paper are: ccalRFP1 (AY823226); ccalYFP1 (AY823227); ccalRFP2 (DQ065851); ccalGFP1 (DQ065852); ccalOFP1 (DQ065853); ccalGFP3 (DQ899732)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号