首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of human KC to IFN-gamma increases their susceptibility to lysis by CTL. The mechanism of this enhanced lysis was investigated by analyzing interactions of IFN-gamma-treated and nontreated cultured KC with allogeneic class I-specific CTL clones. rIFN-gamma treatment augmented KC lysis in a time- and dose-dependent manner. Increased lysis of IFN-KC was detected after only 2 h of IFN-gamma treatment and was maximal by 12 h. Enhanced lysis of IFN-KC was Ag-specific, inasmuch as nonantigenic IFN-KC were not lysed either directly or as bystanders during the lysis of antigenic KC. Parallel immunofluorescence and cytotoxicity assays of KC treated with IFN-gamma for various intervals revealed a direct correlation between the degree of increased KC lysis and levels of cell surface ICAM-1 (CD54), but not of specific alloantigen or beta 2-microglobulin. Lysis of nontreated KC was blocked by mAb against class I or CD3, but not by mAb against ICAM-1 or LFA-1. In contrast, lysis of IFN-KC was partially inhibited by anti-ICAM-1 or anti-LFA-1 mAb, but resisted inhibition by anti-class I mAb except in the presence of anti-ICAM-1. These results indicate that both ICAM-1/LFA-1 and Ag/CD3-TcR interactions are important for Ag-specific lysis of IFN-KC, whereas lysis of nontreated KC depends on Ag/CD3-TcR but not ICAM-1/LFA-1 interactions. Equivalent inhibition of IFN-KC lysis by mAb against ICAM-1 or LFA-1 suggests that ICAM-1 is the only LFA-1 ligand involved in enhanced IFN-KC lysis. Furthermore, enhanced CTL lysis of KC after short-term IFN-gamma treatment can be explained solely on the basis of ICAM-1 induction, because all of the increase in specific lysis associated with IFN-gamma treatment could be blocked by mAb that block ICAM-1/LFA-1 interactions.  相似文献   

2.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

3.
We have shown that intercellular adhesion molecule-1 (ICAM-1) (CD54) positive cells are mainly responsible for the natural cytotoxic function of human blood lymphocytes. The evidences were the inhibition of cytotoxicity by anti-ICAM-1 (LB-2) monoclonal antibodies (mAb) and the loss of lytic activity after removal of the ICAM-1+ cells. In addition, the cytotoxic potential of the separated ICAM-1- lymphocyte population after activation appeared in parallel with the expression of this molecule. The ICAM-1+ lymphocytes lysed both LFA-1 (CD11a/CD18 or Leu-CAMa) positive and negative cell lines, and pretreatment of the effectors with the LB-2 mAb also inhibited the lysis of LFA-1- targets. The results point to a yet unrecognized role of ICAM-1 on the lymphocytes. Kinetics experiments suggested that pretreatment of lymphocytes with alpha-ICAM-1 (LB-2) mAb did not inhibit the promptly established lytic interactions but influenced later events, recycling and/or recruitment of effectors. It is possible that the cytotoxic potential is regulated by contacts between the members of the lymphocyte population and that these events occur via their ICAM-1 and LFA-1. Exposure of lymphocytes to NK-sensitive targets for 16 hr elevated their cytotoxic potential. The function of activated lymphocytes was not inhibited by the LB-2 mAb.  相似文献   

4.
BACKGROUND: PBMC can be expanded ex vivo into aggressive cytotoxic effector cells (CEC) comprising T, NK and NKT cells. We identified the phenotype, cytotoxicity and mechanisms of killing of these CEC. METHODS: CY- and G-CSF-mobilized PBMC from myeloma patients were placed in Aim-V serum-free medium, IL-2 (50 IU/mL) and OKT-3 (50 ng/mL). Cytotoxicity was evaluated by selectively blocking the TCR, MHC class I or NKG2D receptor. RESULTS: The CEC expanded three-fold by day 7 and aggressively lysed myeloma cells (41.9%) compared with day 0 (4%; P=0.012). CD8+ CD56+ NKT cells performed the majority of lysis. The CD8+ cells greatly increased NKG2D expression during culture (P=0.005). Cytotoxicity correlated with target NKG2D ligand expression (P=0.0002). Blocking the TCR or MHC class I did not affect cytotoxicity (P>0.22). CD8+ cell-mediated lysis dropped 48% when the NKG2D receptor was blocked. Day 7 CEC aggressively lysed myeloma cells in an MHC- and non-MHC-restricted fashion, through the NKG2D receptor. DISCUSSION: Because MHC expression is often down-regulated on tumor cells and the NKG2D ligands are generally specific to malignant cells, the adoptive transfer of CEC that kill through different pathways may circumvent tumor-resistant mechanisms and improve outcomes.  相似文献   

5.
Human peripheral blood lymphocytes (PBL) exhibited spontaneous cytotoxicity against OKT3 monoclonal antibody (mAb)-expressing murine hybridoma cells (OKT3 hybridomas). In contrast, other murine hybridomas expressing OKT4, OKT8, anti-HLA DR, and anti-HLA A, B, and C mAb were not lysed. PBL showed much lower levels of cytotoxicity (3 folds) against OKT3 hybridomas as compared with NK activity against the K562 targets. Lymph node (LN) cells exhibited the inverse relationship of cytotoxicity levels. The addition of OKT3 mAb to the effector cells totally blocked both the binding and the lysis of OKT3 hybridoma targets, indicating that the CD3 antigen on the effector cells may be involved in recognition of the targets. The addition of concanavalin (Con A) also inhibited the cytotoxicity of OKT3 hybridomas. OKT4 mAb-expressing hybridomas became susceptible to lysis after chemical attachment of OKT3 mAb with CrCl3. The kinetics of lysis of OKT3 hybridomas resembled that of NK activity. Both cytotoxicities were detectable after 1 to 2 hr and reached plateau levels by 4 to 6 hr. Effector cells responsible for lysis of OKT3 hybridomas expressed T3, T8, and Leu 7 antigens, but lacked T4 and Leu 11b antigens, and were sensitive to the treatment with L-leucine methyl ester. These results indicate that T3+, T8+, Leu 7+ and T4-, and Leu 11- granular lymphocytes have a spontaneous cytotoxic activity against OKT3 hybridomas which is different from classic NK activity. These findings may provide a method for the assessment of T-cell cytotoxicity mediated presumably by in vivo generated cytotoxic T lymphocytes in blood and the other immune organs.  相似文献   

6.
Allergic contact dermatitis (ACD) is the result of an exaggerated immune reaction to haptens mediated by skin-homing T cells, but the effector mechanisms responsible for the tissue damage are poorly understood. Here we studied the capacity of distinct subsets of hapten-specific T cells to induce apoptosis in autologous keratinocytes. Skin- and blood-derived nickel-specific CD8+ T cytotoxic 1 (Tc1) and Tc2 clones as well as CD4+ Th1 and Th2 expressed the cutaneous lymphocyte-associated Ag and exhibited strong MHC-restricted cytotoxicity against nickel-coupled B lymphoblasts, as detected by the [3H]TdR release assay. Both Tc1 and Tc2 clones, but not CD4+ T cells, displayed a significant cytotoxic activity against resting nickel-modified keratinocytes. Following IFN-gamma treatment, keratinocytes expressed MHC class II and ICAM-1 and became susceptible to Th1-mediated, but not Th2-mediated, cytotoxicity. The molecules of the two major cytotoxic pathways, Fas ligand (FasL) and perforin, were expressed by Tc1, Tc2, and Th1 cells, whereas Th2 cells expressed only FasL. Experiments performed in the presence of specific inhibitors of the perforin (concanamycin A) and FasL (brefeldin A) pathway indicated that perforin-mediated killing dominated in Tc1 and Tc2, and FasL-mediated cytotoxicity prevailed in Th2 clones, with a more heterogeneous behavior in the case of Th1 cells. Finally, perforin mRNA was expressed in ACD lesional skin, as assessed by RT-PCR analysis. In aggregate, our results indicate that keratinocytes can be target of multiple hapten-specific CTL responses, that may have distinct roles in the epidermal injury during ACD.  相似文献   

7.
Optimal differentiation of cytotoxic NK cells is important to provide protective innate immunity to patients after bone marrow transplantation. In vitro differentiation of CD56(+)CD3(-) NK cells takes weeks and is supported by several cytokines, including IL-2, IL-7, and IL-15, and thus can be useful for immunotherapy. However, IL-2 therapy is problematic in vivo, and NK cells differentiated in vitro with only IL-7 lack cytotoxicity. We assessed whether human NK cells initially differentiated in vitro from CD34(+)Lin(-) bone marrow cells with IL-7 could acquire cytotoxicity after exposure to additional cytokines and what changes promoted cytotoxicity. The cells cultured with IL-7 already had granzyme B as well as perforin, as previously reported, the proteins of cytotoxic granules. The cells also lacked LFA-1. After 1 wk of secondary culture with either IL-2 or IL-15, but not with IL-12 or IL-18, the IL-7-cultured cells acquired cytotoxicity. IL-2 or IL-15 also induced LFA-1. Ab to the LFA-1 subunits CD11a and CD18 blocked lysis by the NK cells, indicating that the new LFA-1 correlated with, and was essential for, the cytotoxic function of the in vitro generated cells. The LFA-1 also participated in target cell binding by the in vitro differentiated cells. In this study, we demonstrated a new function for IL-15, the induction of LFA-1 in NK progenitor cells, and that IL-15 does more than merely support NK progenitor cell proliferation. The efficacy after only 1 wk of IL-15 administration is a positive practical feature that may apply to human therapy.  相似文献   

8.
A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma.   总被引:10,自引:0,他引:10  
A 15,000 molecular weight protein (15-kDa), induced and secreted by human PBMC after treatment with IFN-alpha or -beta, was assessed for its ability to modulate cellular function. Although it had no effect on growth or 2'5'-A synthetase activity in Daudi, U-937, or HL-60 cells, when incubated with fresh human PBMC, LPS-induced monocyte cytotoxicity against WEHI-164 target cells was augmented. This stimulation was inhibited by both an antibody against TNF-alpha and a rabbit polyclonal antiserum to the 15-kDa protein. Furthermore, when the 15-kDa protein was added to PBMC an increase in GTP cyclohydrolase I activity, as assessed by neopterin secretion, resulted. Neopterin secretion by PBMC in response to the 15-kDa was increased in a dose-responsive manner up to more than sixfold over baseline, with a 15-kDa concentration of less than 10 ng/ml effective. The 15-kDa protein also stimulated indoleamine 2,3-dioxygenase (IDO) activity in fresh, human PBMC. Induction of neopterin secretion and IDO activity was inhibited by a polyclonal antiserum to 15-kDa. LPS-induced cytotoxic activity was not augmented by 15-kDa pretreatment of purified monocytes, indicating the need for the presence of a second cell population and the indirect action of the 15-kDa on the induction of monocyte activities. When PBMC or purified CD3+ cells, but not purified CD14+ cells, were incubated with the 15-kDa protein, secretion of a factor was induced that resulted in the induction of IDO activity in PMA-differentiated THP-1 cells. An antibody to IFN-gamma, but not IFN-alpha, inhibited the induction of IDO activity by this secreted factor. In addition, antiserum to the 15-kDa blocked the secretion of IFN-gamma from the CD3+ cells. Thus, a 15-kDa product of IFN-alpha- and IFN-beta-treated monocytes and lymphocytes can stimulate secretion of IFN-gamma from CD3+ cells.  相似文献   

9.
Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCL) are potent inducers of cytotoxic T-lymphocytes (CTL) in allogeneic mixed lymphocyte cultures (MLC). The contribution of EBV antigens to the induction of cytotoxic responses was investigated by comparing CTL clones derived from allogeneic MLCs of lymphocytes from one EBV seropositive and one seronegative donor for their capacity to lyse paired EBV positive and negative targets. The majority of the clones showed a conventional "HLA-specific" cytotoxicity and lysed equally well HLA-matched LCLs and mitogen-induced T- or B-blasts. A minority of the clones from both donors exhibited an "LCL-selective" killing potential as they lysed poorly T- and B-blasts. The LCL-selective clones did not recognize EBV antigens because they could not discriminate between EBV negative Burkitt lymphoma (BL) lines and their in vitro EBV-converted sublines. MAbs to CD3, CD8, and MHC class I antigens blocked the lysis of LCLs by HLA-specific and LCL-selective CTLs with comparable efficiency suggesting that the two effector types express T-cell receptors of similar affinity. T-blasts were unable to inhibit the lysis of LCLs in cross competition assays. This correlated with a significantly lower expression of the cell adhesion molecules ICAM-1 and LFA-3. The results suggest that stimulation with allogeneic LCLs activates HLA class I-specific CTLs with variable target cell avidity. Only CTLs that act independently of the enhancing effect of cell adhesion molecules are able to lyse mitogen-induced T- and B-blasts.  相似文献   

10.
We have developed culture conditions for the efficient expansion of cytotoxic effector cells from peripheral blood mononuclear cells (PBMC) by the timed addition of cytokine-rich supernatants collected from allogeneic PBMC cultures stimulated with anti-CD3 monoclonal antibody (mAb) (allogeneic CD3 supernatants; ACD3S). These cytotoxic effectors belonged primarily to CD56(+) natural killer (NK) cells, and the cell subset with the greatest cytotoxic activity was an otherwise rare population of CD3(+)CD56(+) cells (NKT cells) that expand dramatically under these conditions. CD3(+)CD56(+) cytotoxic effectors were generated from the PBMC of 16 patients with several types of cancer. The CD3(+)CD56(+) cell subset expanded significantly and efficiently lysed NK- as well as lymphokine-activated killer (LAK)-sensitive targets. More importantly, ACD3S-activated CD3(+)CD56(+) cells were capable of efficiently lysing autologous tumor cells including metastatic colorectal, ovarian, breast, lung and pancreatic tumor cells as well as melanoma cells. ACD3S-expanded CD3(+)CD56(+) cells exhibited increased levels of cytoplasmic interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and perforin. CD3(+)CD56(+) cell-mediated cytotoxicity was not restricted by major histocompatibility complex (MHC) gene products, since it was not blocked by anti-MHC class I mAb but was highly inhibited in the presence of CD2- and CD18-specific mAb. These data suggest that CD3(+)CD56(+) cells expanded under the presence of ACD3S may be utilized in clinical protocols for cancer immunotherapy.  相似文献   

11.
Recent attention has focused on the role keratinocytes (KC) may play in the induction of T cell-mediated inflammatory responses in skin, particularly because KC, when activated by immunologic stimuli, express MHC class II Ag and secrete immunomodulatory cytokines. We tested the capacity of normal human KC that were stimulated with PMA to induce PBMC proliferation. PMA-treated, but not untreated, KC induced proliferation of allogeneic as well as autologous PBMC; in addition, when purified CD4+ or CD8+ T cells were used as responders, each subset proliferated. PBMC proliferation was not due to direct action of PMA on PBMC, nor to contamination of KC cultures with Langerhans cells (LC) or dermal APC. Pretreatment with different protein kinase C inhibitors abrogated the capacity of PMA-stimulated KC to induce proliferation. Paraformaldehyde-fixed PMA-KC stimulated PBMC proliferation, whereas supernatants from PMA-treated KC failed to do so, indicating that a membrane-associated activity on PMA-KC contributes to the induction of PBMC proliferation. PMA induced intercellular adhesion molecule-1 (ICAM-1) expression on KC; furthermore, mAb against ICAM-1 or against its ligand lymphocyte function-associated Ag (LFA-1) (CD11a/CD18) significantly, but incompletely, reduced the stimulatory capacity of PMA-treated KC, indicating that ICAM-1/LFA-1 interaction contributed to PBMC proliferation. IFN-gamma or TNF-alpha also induced ICAM-1 on KC, but these KC failed to stimulate proliferation, suggesting that PMA induces additional signals from KC, which act in concert with ICAM-1 to promote proliferation. Finally, mAb against HLA-ABC or HLA-DR did not inhibit proliferation. We conclude that PMA can activate KC to stimulate T cell proliferation in a MHC-independent fashion. This activation is mediated by protein kinase C and in part by the induction of ICAM-1 expression on KC.  相似文献   

12.
In order to clarify the protective immune responses against a newly identified herpesvirus, human herpesvirus 6 (HHV-6), we established HHV-6-specific human T-cell clones and examined their functional properties. Five CD3+CD4+CD8- T-cell clones, which proliferated in response to stimulation with two different strains of HHV-6 in the presence of autologous antigen-presenting cells but not with herpes simplex virus type 1 or human cytomegalovirus, were established from peripheral blood lymphocytes of a healthy individual. The proliferative response of all T-cell clones to HHV-6 antigen was inhibited by addition of anti-HLA-DR monoclonal antibody, indicating that these clones were human leukocyte antigen (HLA) class II DR restricted. Of the five clones, two lysed HHV-6-infected autologous lymphoblasts, but not HHV-6-infected allogeneic cells or natural killer-sensitive K562 cells (group 1); one showed cytotoxicity against HHV-6-infected autologous lymphoblasts as well as HHV-6-infected allogeneic cells and K562 cells (group 2); and the remaining two showed no cytotoxic activity (group 3). The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR monoclonal antibody to the culture, whereas this monoclonal antibody had no effect on the cytotoxicity of group 2 and did not induce the cytotoxicity of group 3. Perforin, which is one of the mediators of cytotoxicity, was abundantly expressed in group 1 and 2 clones. Moreover, all groups of clones produced gamma interferon after culture with antigen-presenting cells followed by HHV-6 antigen stimulation. These results suggest that HHV-6-specific CD4+ T cells have heterogeneous functions.  相似文献   

13.
We have previously identified mutated ras peptides reflecting the glycine to valine substitution at position 12 as HLA-A2-restricted, CD8+ CTL neo-epitopes. CTL lines produced against these peptide epitopes lysed the HLA-A2+ Ag-bearing SW480 primary colon adenocarcinoma cell line, although IFN-gamma treatment of the targets was necessary to achieve efficient cytotoxicity. Here, we compared the lytic phenotype of the SW480 cell line to its metastatic derivative, SW620, as an in vitro paradigm to further characterize the nature of a HLA class I-restricted, Ag-specific CTL response against neoplastic cell lines of primary and metastatic origin. Although both colon carcinoma cell lines were lysed by these Ag-specific CTL following IFN-gamma pretreatment, the mechanisms of lysis were distinct, which reflected differential levels of sensitivity to the Fas pathway. Whereas IFN-gamma pretreatment rendered SW480 cells sensitive to both Fas-dependent and -independent (perforin) pathways, SW620 cells displayed lytic susceptibility to Fas-independent mechanisms only. Moreover, pretreatment of SW480 cells with the anti-colon cancer agent, 5-fluorouracil (5-FU), led to enhanced Fas and ICAM-1 expression and triggered Ag-specific CTL-mediated lysis via Fas- and perforin-based pathways. In contrast, these phenotypic and functional responses were not observed with SW620 cells. Overall, these data suggested that 1) IFN-gamma and 5-FU may enhance the lytic sensitivity of responsive colon carcinoma cells to immune effector mechanisms, including Fas-induced lysis; 2) the malignant phenotype may associate with resistance to Fas-mediated lysis in response to Ag-specific T cell attack; and 3) if Ag-specific CTL possess diverse lytic capabilities, this may overcome, to some extent, the potential "escape" of Fas-resistant carcinoma cells.  相似文献   

14.
Peripheral blood mononuclear cells (PBMC) from humans without antibodies to dengue 2 virus lysed dengue 2 virus-infected Raji cells to a significantly greater degree than uninfected Raji cells. The addition of mouse anti-dengue antibody increased the lysis of dengue-infected Raji cells by PBMC. Dengue 2 immune human sera also increased lysis of dengue-infected Raji cells by PBMC. These results indicate that both PBMC-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) can cause significant lysis of dengue-infected Raji cells. The lysis of infected Raji cells in the ADCC assay correlated with the dilution of dengue-specific antibody which was added, indicating the dengue virus specificity of the lysis of dengue virus-infected Raji cells. Alpha interferon (IFN alpha) was detected in the culture supernatant of PBMC and dengue-infected Raji cells. However, enhanced lysis of dengue-infected Raji cells by PBMC may not be due to the IFN produced, because neutralization of all IFN activity with anti-IFN alpha antibody did not decrease the lysis of dengue-infected cells, and effector cells pretreated with exogenous IFN alpha also lysed dengue-infected cells to a greater degree than uninfected cells. The effector cells responsible for lysis of dengue virus-infected Raji cells in the natural killer and ADCC assays were analyzed. Nonadherent PBMC caused more lysis than did adherent cells. Characterization of nonadherent cells with monoclonal antibodies showed that the predominant responsible effector cells were contained in OKM1+ and OKT3- fraction in the natural killer and ADCC assays.  相似文献   

15.
Our previous studies in volunteers immunized with Salmonella enterica serovar Typhi (S. Typhi) have suggested an important role for CD8+ T cells in host defense. In this study we describe a novel subset of nonclassical human HLA-E-restricted S. Typhi-specific CD8+ T cells derived from PBMC of Ty21a typhoid vaccinees. CD3+CD8+CD4-CD56- T cells effectively killed S. Typhi-infected targets regardless of whether they share classical HLA class I molecules with them, by a FAS-independent, granule-dependent mechanism, as evidenced by induction of granzyme B release and the blocking effects of concanamycin and strontium ions. The expression of HLA-E Ags, but not CD1-a, -b, or -c, on the membrane of S. Typhi-infected targets rendered them susceptible to lysis. Moreover, anti-HLA-E Abs partially blocked these responses. We also demonstrated that presentation of S. Typhi Ags via HLA-E could stimulate IFN-gamma production. Increases in the net frequency of IFN-gamma spot-forming cells were observed in the presence of targets coated with peptides that contain S. Typhi GroEL HLA-E binding motifs. These results demonstrate that HLA-E binds nonamer peptides derived from bacterial proteins and trigger CD8+-mediated lysis and IFN-gamma production when exposed to infected targets, raising the possibility that this novel effector mechanism might contribute to host defense against intracellular bacterial infections.  相似文献   

16.
Freshly isolated human peripheral blood monocytes and in vitro monocyte-derived macrophages were infected with HSV type 1 and used as target cells in a cell-mediated cytotoxicity assay. PBMC from both HSV-immune and non-immune donors were stimulated in vitro for 5 days with UV-inactivated HSV Ag and used as effector cells. Effectors from HSV-immune donors mediated virus-specific lysis of both monocyte and macrophage targets, whereas effectors from non-immune donors failed to mediate target cell lysis. Mean virus-specific lysis of autologous monocytes was (8.5 +/- (+/- 2.0)%) compared to a threefold greater virus-specific lysis of autologous macrophages (24.7 (+/- 4.3)%). More than 70% of this lysis was mediated by CD16- T lymphocytes. Further analysis demonstrated that the majority of the lysis against autologous and allogeneic targets was HLA-DR-restricted and mediated by CD4+ CTL. However, CD8+ CTL also contributed to the lysis of autologous targets as well as allogeneic targets having a common HLA-A and/or -B determinant. The HLA-restricted cytotoxicity was virus-specific as HSV-infected, but not CMV-infected, cells were lysed. CTL-mediated lysis of HSV-infected monocytes and macrophages may be of significance in the anti-viral and immunoregulatory host response.  相似文献   

17.
We studied the susceptibility of autologous and allogeneic tumors to lysis by human tumor infiltrating lymphocytes (TIL) after pre-incubation of the tumors with human rIFN-gamma and human rTNF-alpha. Preincubation of the tumor lines with IFN-gamma or TNF enhanced susceptibility to lysis significantly; the combination of both cytokines was more effective than either alone. Pretreatment for at least 24 h was required to enhance lytic susceptibility and maximal lysis was observed after pretreatment for 48 to 72 h. Highly specific TIL lysed only their autologous tumor targets and failed to lyse cytokine pretreated allogeneic tumor cells. In TIL populations with varying specificity, cytokine pretreatment of targets enhanced autologous lysis as well as allogeneic lysis. This cytokine-mediated effect could also be observed in a lectin-dependent cytotoxicity assay and did not correlate directly with enhanced expression of MHC class I Ag or the adhesion molecules LFA-3 and ICAM-1. These results suggest that enhancement of lysis may occur at a postbinding stage by making the target cell more sensitive to the cytotoxic factors delivered by the killer cell. The fact that lysis of cytokine treated targets by cells with LAK activity was not enhanced suggests that cells with lymphokine-activated killer activity and tumor-derived T cells kill tumor targets via different mechanisms.  相似文献   

18.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

19.
NK cells promptly disappear from the circulation of patients treated with high dose i.v. rIL-2. To further study this process, we evaluated the effects of IL-2 (1000 U/ml) on normal donor PBMC incubated for 1 h on cultured human saphenous vein endothelial cells (EC). Although the NK activity of non-adherent PBMC recovered from flasks coated only with fibronectin increased in the presence of supplemental IL-2, the activity of cells recovered from flasks coated with EC decreased when IL-2 was added to the medium. The percentage of NK (CD16+) cells among the EC-non-adherent PBMC was reduced relative to that of the input cells when IL-2 was added. The percentage of CD16+ cells in the EC-adherent PBMC, as well as their NK activity, increased in the presence of added IL-2. Although EC had no effect on the lysis of labeled K-562 cells by unstimulated PBMC in cold target competition experiments, they were able to compete in cytolytic assays using PBMC previously activated by exposure to IL-2 for 1 h. EC were not lysed by these briefly activated PBMC in 3-h cytotoxicity assays but were lysed by these effectors in 18-h assays and in 3-h assays using PBMC pre-activated by more prolonged culture with IL-2. The ability of IL-2 to induce NK cell adhesion to EC was not blocked by a mixture of neutralizing antisera raised against rTNF-alpha, rIL-1 alpha, and rIL-1 beta, factors known to promote leukocyte adhesion to EC. We conclude that IL-2 rapidly induces NK cell adhesion to EC and propose that this effect accounts for the disappearance of circulating NK cells after the infusion of high doses of IL-2. In addition, these results suggest that NK cells activated by IL-2 in vivo may injure the endothelium and contribute to the extravasation of plasma and the retention of fluid characteristic of IL-2 treatment.  相似文献   

20.
In vivo exposure of human epidermis to UV abrogates the function of T6+DR+ Langerhans cells and induces the appearance of Ag-presenting T6-DR+ OKM5+ cells in the epidermis. Since UV exposure of murine skin results in Ts lymphocyte activation, we investigated the capacity of human epidermal cells (EC) harvested 3 days after in vivo UV exposure to activate regulatory and effector autologous T lymphocyte subsets. T lymphocytes were separated into CD8+ suppressor/cytotoxic lymphocytes and CD4+ helper/inducer lymphocytes by C lysis and panning. The CD4+ subset was further divided by using the 2H4 mAB to obtain CD4+2H4+ lymphocytes (inducers of TS lymphocytes) and CD4+2H4- lymphocytes (inducers of B cell Ig production and inducers of cytotoxic T cells). Unirradiated suction blister-derived EC from control skin (C-EC) and from skin exposed in vivo to UV (UV-EC) were cultured with purified autologous T lymphocyte subsets in the absence of added Ag. The resultant T lymphocyte proliferation was detected by [3H]thymidine uptake. UV-EC were highly effective in the stimulation of CD4+ lymphocytes, whereas C-EC were poor stimulators. The stimulator effect of UV-EC was abrogated after depletion of DR+ UV-EC. When CD4+ lymphocytes were fractionated, UV-EC consistently demonstrated enhanced ability to stimulate suppressor-inducer CD4+2H4+ lymphocytes relative to C-EC. Although less responsive than CD4+2H4+ lymphocytes, CD4+2H4- lymphocytes also demonstrated greater proliferation to UV-EC than to C-EC. Neither UV-EC nor C-EC were able to activate CD8+ lymphocytes devoid of CD4+ lymphocytes. However, after addition of rIL-2 at concentrations that allow binding only to the high affinity IL-2R on T lymphocytes, UV-EC induced vigorous proliferation of CD8+ lymphocytes, whereas C-EC induced only background levels of proliferation. C lysis of leukocytes resident within UV-EC resulted in 66 to 70% reduction of CD8+ lymphocyte proliferation. In conclusion, UV-EC may activate CD8+ lymphocytes by at least two pathways: (1) UV-EC activation of CD4+2H4+ lymphocytes may induce differentiation/proliferation of CD8+ suppressor cells and (2) UV-EC activation of CD4+ cells may induce IL-2 production, that, in combination with UV-induced epidermal leukocytes, stimulates CD8+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号