首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The distribution of tectal projections of two visual areas of the superior temporal sulcus (MT and MST areas) has been studied, in five Macaca fascicularis, by means of the autoradiographic method tracing the anterograde transport of tritiated aminoacids intracortically injected. 2. In all cases the ipsilateral superior colliculi (SC) were found labelled, whereas the contralateral ones were devoid of label. 3. The three brains injected in the MT area resulted in SC labels that involved the superficial gray layer (SGS), the stratum opticum (SO) and the intermediate gray layer (SGI), sparing the layers below SGI. 4. The collicular labels found after injections within the MST area exhibited their distribution over the deep SC subdivision, whereas they spared all the superficial layers but the deep part of the SO. 5. In two animals with large uptake zones, one in MT and the other in MST, the labelling within the SGI showed a cluster-like pattern. 6. The distinct found bulk of projections of MT and MST respectively to the superficial and deep subdivisions of the SC, along with a number of peculiar connections of the MST area as mentioned in the text, contribute to depict an overall neural network in which MST appears to be more strongly involved than MT in linking sensory visual with oculomotor attentive functions.  相似文献   

2.
3.
4.
5.
6.
Although the direction selective properties of the superficial layer cells of the cat's superior colliculus have been extensively studied, the mechanisms underlying this property remain controversial. With the aim to understand the mechanism(s) underlying directional selectivity of collicular neurons we examined the substructure of their visual receptive fields. 1. The strength of cell responses and the direction selectivity indices varied in relation to the location of the tested region within the receptive field and the amplitude of stimulus movement. 2. Decrease of the amplitude of motion resulted in a decrease of direction selectivity index both in the group of direction-selective cells and in the group of cells classified as direction nonselective but with a directional bias. 3. The decrease of direction selectivity for small amplitude movement resulted mainly from increase in the magnitude of response in the nonpreferred direction of movement. 4. These results suggest that the receptive fields of most collicular cells are composed of subregions with different response profiles and indicate that inhibitory mechanisms dictate direction selectivity of collicular cells.  相似文献   

7.
8.
Ikeda T  Hikosaka O 《Neuron》2003,39(4):693-700
Eye movements are often influenced by expectation of reward. Using a memory-guided saccade task with an asymmetric reward schedule, we show that visual responses of monkey SC neurons increase when the visual stimulus indicates an upcoming reward. The increase occurred in two distinct manners: (1) reactively, as an increase in the gain of the visual response when the stimulus indicated an upcoming reward; (2) proactively, as an increase in anticipatory activity when reward was expected in the neuron's response field. These effects were observed mostly in saccade-related SC neurons in the deeper layer which would receive inputs from the cortical eye fields and the basal ganglia. These results, together with recent findings, suggest that the gain modulation may be determined by the inputs from both the cortical eye fields and the basal ganglia, whereas the anticipatory bias may be derived mainly from the basal ganglia.  相似文献   

9.
Evoked potentials arising in the visual cortex and superior colliculus to stimulation of the collateral eye by single, paired, and repetitive flashes were recorded in rabbits reared in darkness or in normal illumination. The absence of significant change in the latent period and amplitudes of the first two components of the collicular responses and of the recovery cycle and response to repetitive stimulation in the light-deprived animals suggest that photic stimulation does not affect the normal functional development of the rabbit retinotectal system. However, functional deafferentation in the early postnatal period gives rise to serious disturbances of visual cortical function, as reflected in a marked decrease in amplitude of the primary response, lengthening of the recovery cycle, and narrowing of the range of rhythm-binding frequencies of flashes. These disturbances were reversible. The period of maximal sensitivity of the rabbit retinocortical system to visual deprivation begins at the end of the first month of postnatal life. The possible mechanisms lying at the basis of these functional disturbances in light-deprived animals are discussed.  相似文献   

10.
During binocular stimulation of different sectors of the retina the amplitude of the two first postsynaptic components of the evoked potential in the superior colliculus to the second stimulus varies with the time delay between the testing and conditioning stimuli. Correlation is shown between the form of the evoked potential arising in response to the conditioning stimulus and the character of convergence of visual impluses in the superior colliculus. Qualitative differences are found in binocular interaction between sensory impulses depending on the way in which the conditioning impulses reach the region of the superior colliculus tested. An attempt is made to assess interaction between sensory volleys in the superior colliculus quantitatively.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 133–137, March–April, 1973.  相似文献   

11.
1. The arrangement of the pyramidal cells of the visual cortex has been investigated by light and electron microscopy in 36 albino rats. 2. It was shown, that the apical dendrites form bundles. The number of dendrites per bundle is about 5 in the lower lamina Vb and 7.5 in the upper lamina Va, the diameter of bundles is about 25.7 mum. The average distance between the centers of bundles is 76,4 mum, and between the peripheries 53.1 mum. 3. The results are compared with physiological and morphological findings. It was shown, that there is an agreement of diameter of bundles und their lateral branching dendrites with diameters of columns of cells and of terminal branchings of specific afferents. 4. The morphological results are graphically reconstructed.  相似文献   

12.
13.
Lau C  Zhou IY  Cheung MM  Chan KC  Wu EX 《PloS one》2011,6(4):e18914

Background

The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN''s response temporal dynamics following short duration (1 s) visual stimulation.

Methodology/Principal Findings

Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC.

Conclusions/Significance

The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.  相似文献   

14.
Felsen G  Mainen ZF 《Neuron》2008,60(1):137-148
Deciding in which direction to move is a ubiquitous feature of animal behavior, but the neural substrates of locomotor choices are not well understood. The superior colliculus (SC) is a midbrain structure known to be important for controlling the direction of gaze, particularly when guided by visual or auditory cues, but which may play a more general role in behavior involving spatial orienting. To test this idea, we recorded and manipulated activity in the SC of freely moving rats performing an odor-guided spatial choice task. In this context, not only did a substantial majority of SC neurons encode choice direction during goal-directed locomotion, but many also predicted the upcoming choice and maintained selectivity for it after movement completion. Unilateral inactivation of SC activity profoundly altered spatial choices. These results indicate that the SC processes information necessary for spatial locomotion, suggesting a broad role for this structure in sensory-guided orienting and navigation.  相似文献   

15.
Space coding in the superior colliculus has traditionally been viewed as a static representation by multiple, aligned, sensory and motor maps. Recent evidence has revealed that the maps are dynamic, shaped by sensory experience in developing animals, and by eye and head position signals in adults. The superior colliculus thus provides an ideal model for studying the neural mechanisms underlying developmental and real-time modifications of information representation in the brain.  相似文献   

16.
17.
The intermediate and deep layers of the superior colliculus (SC) are known for their role in initiating orienting behaviors. To direct these orienting functions, the SC of some animals (e.g., primates, carnivores) is dominated by inputs from the distance senses (vision, audition). In contrast, the rodent SC relies more heavily on non-visual inputs, such as touch and nociception, possibly as an adaptive response to the proximity of dangers encountered during their somatosensory-dominant search behaviors. The ferret (a carnivore) seems to employ strategies of both groups: above ground they use visual/auditory cues, but during subterranean hunting ferrets must rely on non-visual signals to direct orienting. Therefore, the present experiments sought to determine whether the sensory inputs to the ferret SC reveal adaptations common to functioning in both environments. The results showed that the ferret SC is dominated (63%; 181/286) by visual/auditory inputs (like the cat), rather than by somatosensory inputs (as found in rodents). Furthermore, tactile responses were driven primarily from hair-receptors (like cats), not from the vibrissae (as in rodents). Additionally, while a majority of collicular neurons in rodents respond to brief noxious stimulation, no such neurons were encountered in the ferret SC. A small proportion (4%; 13/286) of the ferret SC neurons were responsive to long-duration (> 5s) noxious stimulation, but further tests could not establish these responses as nociceptive. Collectively, these data indicate that the ferret SC is best adapted for the animal's visual/acoustically guided activities and most closely resembles the SC of its phylogenetic relative, the cat.  相似文献   

18.
The intermediate and deep layers of the superior colliculus (SC) are known for their role in initiating orienting behaviors. To direct these orienting functions, the SC of some animals (e.g., primates, carnivores) is dominated by inputs from the distance senses (vision, audition). In contrast, the rodent SC relies more heavily on non-visual inputs, such as touch and nociception, possibly as an adaptive response to the proximity of dangers encountered during their somatosensory-dominant search behaviors. The ferret (a carnivore) seems to employ strategies of both groups: above ground they use visual/auditory cues, but during subterranean hunting ferrets must rely on non-visual signals to direct orienting. Therefore, the present experiments sought to determine whether the sensory inputs to the ferret SC reveal adaptations common to functioning in both environments. The results showed that the ferret SC is dominated (63%; 181/286) by visual/auditory inputs (like the cat), rather than by somatosensory inputs (as found in rodents). Furthermore, tactile responses were driven primarily from hair-receptors (like cats), not from the vibrissae (as in rodents). Additionally, while a majority of collicular neurons in rodents respond to brief noxious stimulation, no such neurons were encountered in the ferret SC. A small proportion (4%; 13/286) of the ferret SC neurons were responsive to long-duration (>5 s) noxious stimulation, but further tests could not establish these responses as nociceptive. Collectively, these data indicate that the ferret SC is best adapted for the animal's visuallacoustically guided activities and most closely resembles the SC of its phylogenetic relative, the cat.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号