首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In North American Lycium (Solanaceae), the evolution of gender dimorphism has been proposed as a means of restoring outcrossing after polyploidization causes the loss of self-incompatibility. Previous studies of this process in Lycium focused on comparisons between species that differ in ploidy. We examined intraspecific variation in floral morphology and DNA content in populations of L. californicum to determine correlations between sexual system and cytotype. We also used nuclear ITS and GBSSI sequence data to determine whether diploid and polyploid forms represent the same phylogenetic species, and the phylogeographic relationships among populations and ploidy levels. Within populations, no variation in ploidy was found, although among populations there was a perfect correspondence between sexual system and cytotype. Diploid populations were all hermaphroditic, whereas tetraploid populations were all gender dimorphic. There was no clear geographic pattern to the occurrence of diploid and tetraploid forms. Phylogenetic analysis confirms that L. californicum, regardless of ploidy, forms a monophyletic group within the genus Lycium. Sequences from diploid and polyploid individuals did not form reciprocally monophyletic clades, indicating either multiple gains of polyploidy, ongoing gene flow between cytotypes, or lack of lineage sorting since the evolution of polyploidy. The correspondence between ploidy and sex expression is consistent with the hypothesis that polyploidization triggers the evolution of gender dimorphism in this and other Lycium species.  相似文献   

3.
Research on human evolution and sexual dimorphism motivates an interesting test problem. In studying hominid phylogeny it is of interest to test whether parallel evolution plays a role. With regard to sexual dimorphism it is of interest to known whether the directions of sexual dimorphism in the populations being compared are the same. We show that testing these two problems gives rise to the same type of hypothesis testing, viz. the problem of testing the hypothesis that the means of independent, normally distributed random vectors with unit covariance matrices are situated on a straight line through the origin. A test is proposed and applied to study the sexual dimorphism of 20 recent skull populations. In this example the hypothesis of equal directions of sexual dimorphism is rejected. The classical theory of constructing multiple discriminant functions (canonical variates) is adapted to the problem of comparing sexual dimorphisms.  相似文献   

4.
5.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

6.
【目的】本研究运用几何形态测量学方法对黄蜻Pantala flavescens Fabricius前翅和后翅的雌雄二态性进行分析,探讨黄蜻雌雄性在翅上的形态差异。【方法】通过对黄蜻的前翅和后翅做数字化标点,获得翅的形态信息。经主成分分析(PCA)和薄片样条法(TPS)获得雌雄性在翅型和翅脉上的差异性。【结果】PCA结果表明,黄蜻雌雄性的前翅和后翅在翅型、翅脉结构上存在着明显差异,而且后翅间的差异更大。经TPS分析可知,雌雄性黄蜻前翅上的差异部位主要发生在亚翅结和三角室,后翅的差异部位主要发生在亚翅结、肘脉域和臀角区域。对黄蜻前后翅的大小分析(CS)可知,雌性黄蜻前后翅较大,雄性黄蜻前后翅较小。【结论】黄蜻雌雄性间的翅型结构差异性表明雌雄性在其各自生活史中履行不同的职责,特定的飞行模式逐渐形成特定的翅型、翅脉结构。  相似文献   

7.
Podarcis bocagei and P. carbonelli are two closely related lacertid species, very similar morphologically and ecologically. We investigated sexual dimorphism patterns presented by both species in allopatry and in sympatry. Sexual size and shape dimorphism patterns were analyzed using both multivariate and geometric morphometric techniques. Multivariate morphometrics revealed a marked sexual dimorphism in both species--males being larger with more robust habitus and females presenting a longer trunk. General patterns of sexual size dimorphism are not modified in sympatry, although there is evidence for some morphological change in male head size. The application of geometric morphometrics offered a more detailed image of head shape and revealed that males present a more developed tympanic area than do females, while females have a more rounded head. Differences in the degree of sexual shape dimorphism were detected in sympatry, but no consistent patterns were observed. From the results of the study, and based on previous knowledge on the populations studied, we conclude that the morphological differences observed are probably not caused by exploitative competition between the species, but rather appear attributable to the modification of the relative influence of sexual and natural selection on both sexes.  相似文献   

8.
Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex‐specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome‐wide level in Drosophila melanogaster, using the presence of sex‐biased expression as a proxy for the sex‐specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex‐biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male‐biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male‐biased expression. Conversely, female‐biased expression is not common among duplicates; fewer duplicate genes are expressed in the female‐soma and ovaries than in the male‐soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex‐biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male‐biased, but not female‐biased, gene expression, thereby aiding the evolution of sexual dimorphism.  相似文献   

9.
Sex-limited mutations and the evolution of sexual dimorphism   总被引:4,自引:0,他引:4  
Abstract.— Although the developmental and genetic mechanisms underlying sex differences are being elucidated in great detail in a number of species, there remains a breach between proximate and evolutionary studies of sexual dimorphism. More precisely, the evolution of sex-limited gene expression at autosomal loci has not been well reasoned using either theoretical or empirical methods. Here, I show that a Mendelian genetic model including elementary details of sexual differentiation provides novel insight into the evolution of sex differences via sex limitation. This model indicates that the nature of allelic effects and the pattern of selection must be known in both sexes to predict the evolution of sex differences. That is, selection interacts with genetic variation for sexual dimorphism to produce unanticipated patterns of trait divergence or convergence between the sexes. Ultimately, this model may explain why previous models for the evolution of sexual dimorphism do not predict the erratic behavior of the sex difference during artificial selection experiments.  相似文献   

10.
11 , Evolution 34 : 292–305) equations for predicting the evolution of sexual size dimorphism (SSD) through frequency‐dependent sexual selection, and frequency‐independent natural selection, were tested against results obtained from a stochastic genetic simulation model. The SSD evolved faster than predicted, due to temporary increases in the genetic variance brought about by directional selection. Predictions for the magnitude of SSD at equilibrium were very accurate for weak sexual selection. With stronger sexual selection the total response was greater than predicted. Large changes in SSD can occur without significant long‐term change in the genetic correlation between the sexes. Our results suggest that genetic correlations constrain both the short‐term and long‐term evolution of SSD less than predicted by the Lande model.  相似文献   

11.
The integration of macroevolutionary pattern with developmental mechanism presents an outstanding challenge for studies of phenotypic evolution. Here, we use a combination of experimental and comparative data to test whether evolutionary shifts in the direction of sexual size dimorphism (SSD) correspond to underlying changes in the endocrine regulation of growth. First, we combine captive breeding studies with mark‐recapture data to show that male‐biased SSD develops in the brown anole lizard (Anolis sagrei) because males grow significantly faster than females as juveniles and adults. We then use castration surgeries and testosterone implants to show that castration inhibits, and testosterone stimulates, male growth. We conclude by reviewing published testosterone manipulations in other squamate reptiles in the context of evolutionary patterns in SSD. Collectively, these studies reveal that the evolution of SSD has been accompanied by underlying changes in the effect of testosterone on male growth, potentially facilitating the rapid evolution of SSD.  相似文献   

12.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

13.
Todd H. Oakley 《Hydrobiologia》2005,538(1-3):179-192
Evolutionists often use phylogeny to examine independent evolutionary events in search of generality. Therefore, groups of organisms rich in such independent character transitions are particularly valuable for the study of evolution. With respect to eyes, vision, and light-related characters, one such group is Ostracoda (Crustacea). Phylogenies of ostracods, derived from DNA sequence data and morphological characters, are presented. These inferred relationships largely agree with previous assessments of ostracod phylogeny, with the exception of paraphyletic Philomedidae. Based on methods of character reconstruction using these inferred relationships, different groups of ostracods probably evolved both bioluminescence and extreme sexual dimorphism (females lack eyes, males have large eyes) multiple times. Furthermore, myodocopid ostracods may have evolved compound eyes independently of other arthropods. For these and other reasons, it is proposed that the Ostracoda are an exceptionally important group for studying the evolution of vision- and light-related characters.  相似文献   

14.
Research on human evolution and sexual dimorphism motivates an interesting test problem. In studying hominid phylogeny it is of interest to test whether parallel evolution plays a role. With regard to sexual dimorphism it is of interest to know whether the directions of sexual dimorphism in the populations being compared are the same. We show that testing these two problems gives rise to the same type of hypothesis testing, viz. the problem of testing the hypothesis that the means of independent, normally distributed random vectors with unit covariance matrices are situated on a straight line through the origin. A test is proposed and applied to study the sexual dimorphism of 20 recent skull populations. In this example the hypothesis of equal directions of sexual dimorphism is rejected. The classical theory of constructing multiple discriminant functions (canonical variates) is adapted to the problem of comparing sexual dimorphisms.  相似文献   

15.
Allometric trends in the degree of sexual dimorphism with body size have long fascinated evolutionary biologists. Many male-biased clades display more prominent sexual dimorphism in larger taxa (Rensch's rule), with most examples documenting this pattern for body size dimorphism. Although sexual dimorphism in traits other than body size is equally functionally relevant, characterizing allometric patterns of sexual dimorphism in such traits is hampered by lack of an analytical framework that can accommodate multivariate phenotypes. In this article, we derive a multivariate equivalency for investigating trends in sexual dimorphism—relative to overall body size—across taxa and provide a generalized test to determine whether such allometric patterns correspond with Rensch's rule. For univariate linear traits such as body size, our approach yields equivalent results to those from standard procedures, but our test is also capable of detecting trends in multivariate datasets such as shape. Computer simulations reveal that the method displays appropriate statistical properties, and an empirical example in Mediterranean lizards provides the first demonstration of Rensch's rule in a multivariate phenotype (head shape). Our generalized procedure substantially extends the analytical toolkit for investigating macroevolutionary patterns of sexual dimorphism and seeking a better understanding of the processes that underlie them.  相似文献   

16.
Conflicts over mating decisions characterize the sexual behaviour of many insects, in particular when males encounter females that already carry enough sperm to fertilize their eggs, since a mating often will inflict greater costs than benefits upon females. Therefore, coevolutionary models predict adaptation and counter-adaptation by the sexes in a battle to control the outcome of sexual encounters. A phylogenetic analysis was performed on patterns of sexual dimorphism and mating systems within water striders (Hemiptera, Gerridae). Phylogenetic effects or 'constraints' have significantly shaped patterns of sexual dimorphism in female/ male size ratios, legs and genitalia of males, and the structure of the female abdomen. Males of ancestral gerrids were probably slightly smaller than conspecific females, had powerful fore legs adapted to grasp the female's thorax during mating, and had clasping genitalic structures suited to grasp or pinch the female posteriorly. Most gerrids have a female/male size ratio between 1.05 and 1.14, but more pronounced sexual size ratios (above 1.25) have independently evolved several times in the family, usually in association with extended post-copulatory mate guarding. The comparative, phylogenetic analysis suggests coevolution of female anticlasper and male clasping devices for the clade comprising the subfamilies Cylindrostethinae, Ptilomerinae, and Halobatinae while female anticlasper devices have evolved in the absence of male clasping genitalia in the Gerrinae. The ancestral and most common mating system in gerrids is 'scramble competition polygyny' from which has evolved 'resource defence polygyny' at least four times independently of each other. The phylogenetic effects on patterns of mating behaviour are much less obvious, as exemplified by the large amount of interspecific variation in some genera.  相似文献   

17.
Natural selection can influence the evolution of sexual dimorphism through selection for sex-specific ecomorphological adaptations. The role of natural selection in the evolution of sexual dimorphism, however, has received much less attention than that of sexual selection. We examined the relationship between habitat structure and both male and female morphology, and sexual dimorphism in size and shape, across 21 populations of dwarf chameleon (genus Bradypodion). Morphological variation in dwarf chameleons was strongly associated with quantitative, multivariate aspects of habitat structure and, in most cases, relationships were congruent between the sexes. However, we also found consistent relationships between habitat and sexual dimorphism. These resulted from both differences in magnitude of ecomorphological relationships that were otherwise congruent between the sexes, as well as in sex-specific ecomorphological adaptations. Our study provides evidence that natural selection plays an important role in the evolution of sexual dimorphism.  相似文献   

18.
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures.  相似文献   

19.
Sexual selection,sexual dimorphism and plant phylogeny   总被引:2,自引:0,他引:2  
Summary Darwin examined sexual dimorphism in animals, arguing that sexual selection was important in the evolution of such dimorphism. Sexual dimorphism in plants may have parallel causes and costs.The processes that contribute to sexual dimorphism may also lead to speciation and morphological differences among related species, as argued originally by Darwin. Where sexes are separate and dimorphism is well-developed, males of related animal species (both vertebrate and invertebrate) are often strikingly different from each other, while females may be virtually indistinguishable. A similar pattern may exist in plants: it is frequently the males (of dioecious taxa) or the male portions of the flower (in co-sexual flowers) that apparently have diversified. I suggest that the similarity of pattern may be accounted for by a similarity of process.In addition, sexual selection may have contributed to certain evolutionary trends within the angiosperms and, indeed, to angiosperm radiation.  相似文献   

20.
SinceDelpino (1869),Juel (1894, 1911), andMüller (inMöller 1921: 164), the flowers ofSolanaceae have received little attention with regard to function and pollination syndromes. The present paper deals with representatives of 6 of the 9 known salpiglossidean genera. Previous observations are updated and discussed at the tribal level. Most species studied are butterfly- or moth-pollinated. With the exception ofSalpiglossis, the fertile floral parts are concealed in the corolla tube, and their arrangement is specially suited for deposit of the pollen on the lepidopteran tongue. Particularly notable are (a) abundant stigmatic secretion that makes the pollen sticky, and (b) versatile anthers that optimize contact between the tongue and the thecae.Brunfelsia andBrowallia exhibit a mechanism analogous to that ofApocynaceae, however, with two entrances instead of five. When the tongue is inserted, it is forced to contact the stigma and becomes glued with its secretion. When the tongue is pulled out, it touches the anthers and causes slight balancing movement. InStreptosolen, very probably an ornithophilous descendant of theBrowallia stock, the mechanism is much simplified.Leptoglossis andHunzikeria bear a novel device for pollen deposition: there are two fertile wheel-like anthers that are capable of full rotation up to eight turns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号