首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Liu MG  Li NP  Wu RL  Ma Y  Hong YZ  Tian D  Zhu M 《生理学报》2006,58(3):255-261
为了探讨结肠腺瘤性息肉病(adenomatous polyposis coli,APC)蛋白、糖原合成酶激酶3β(glycogen synthase kinase3β,GSK3β)在吸烟致气道上皮细胞(airway epithelial cell,AEC)损伤修复中的作用,本实验建立了吸烟导致AEC损伤修复的小鼠模型,采用HE染色、免疫组织化学染色、免疫荧光共聚焦成像和Western blot方法,观察损伤修复过程中APC蛋白、GSK3β在AEC中表达及分布的动态变化.结果显示:(1)随着吸烟时间延长,AEC形态学上呈现损伤(1、4周)、修复(8周)、再损伤(12周)的变化.(2)免疫组化染色显示:AEC中APC蛋白表达在吸烟1周时较对照组明显增强,4周时较对照组明显减弱,8、12周时均较4周时增强但与对照组无差异;对照组GSK3β表达较强,吸烟组表达较对照组均减弱.Western blot检测小鼠肺组织中APC蛋白、GSK3β的表达变化与免疫组化结果一致,磷酸化GSK3β(p-GSK3β)在吸烟组的表达较对照组均有不同程度增高,尤以吸烟1周时明显.(3)荧光共聚焦成像显示:对照组APC蛋白在AEC胞质内均匀分布,吸烟1、8周时APC蛋白定位发生改变,呈簇状聚集于AEC腔面和侧面质膜下;GSK3β在对照组和吸烟组AEC胞质内均匀分布,无定位改变.由上述结果可见,吸烟致小鼠AEC损伤修复过程中APC蛋白表达及在胞质内分布呈动态变化,同时伴有GSK3β表达下调和磷酸化水平增高,提示二者可能通过参与修复过程中细胞迁移、分裂增殖等活动,在气道上皮损伤修复过程中发挥重要作用.  相似文献   

2.
目的观察糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK3β)在气道上皮细胞(airway epithelialcells,AECs)损伤修复中的变化。方法利用吸烟/香烟提取物(cigarette smoke extract,CSE)、脂多糖(lipopolysacchor-id,LPS)和博来霉素(bleomycin,BLM)刺激分别建立几种体内、外气道上皮损伤模型,采用免疫细胞荧光、共聚焦成像和Western blot方法,观察GSK3β在几种不同损伤模型中的表达变化。结果①荧光共聚焦成像:GS3β在对照组小鼠AECs胞质内呈均匀分布的红色荧光颗粒,而吸烟、LPS和BLM三种体内模型中AEC胞质内红色荧光均明显减弱;免疫细胞荧光:GSK3β在对照组AECs胞质内呈强阳性均匀分布的红色荧光颗粒,而CSE、LPS、BLM刺激后的三种体外模型GSK3β在胞质内红色荧光均明显减弱。②Western blot:在体内模型中,吸烟组、LPS刺激组及BLM刺激组GSK3β表达均低于对照组,其中吸烟1w、LPS刺激1d、BLM刺激7d时表达最低(P≤0.05);而P-GSK3β均高于对照组,其中吸烟1w、LPS刺激7d和14d达到高峰(P<0.05)。在体外模型中,以上三种刺激均可导致抑制性磷酸化GSK3β的水平升高并呈浓度依赖性(P<0.05),而GSK3β表达则完全相反,随着浓度的升高趋势越明显(P<0.05)。结论吸烟/CSE,LPS、BLM刺激致AEC损伤修复过程中伴有GSK3β表达的活性改变,提示其在损伤修复中发挥重要作用。  相似文献   

3.
Wang YP  Wang F  Wang MX  Zhu M  Ma Y  Wu RL 《生理学报》2008,60(3):409-418
气道上皮损伤修复过程包括细胞延伸、迁移和增殖.IQGAP1 (IQ domain GTPase-activating protein 1)是一个在许多细胞生命活动中非常有意义的蛋白,但其在肺上皮细胞中的作用尚未阐述清楚.本文采用目前广泛应用的刮伤气道上皮细胞的体外模型来研究IQGAP1的功能.结果显示,IQGAP1在小鼠、大鼠、猪和人气道上皮细胞中有丰富表达.它与微管骨架共定位,可被微管解聚剂nocodazole破坏.刮伤6~9h后,IQGAP1 mRNA及蛋白表达上调.过表达外源性IQGAP1导致β-catenin核转位,从而活化Tcf/Lef信号.此外,刮伤还影响IQGAP1与β-catenin、结肠腺瘤病(adenomatous polyposis coli, APC)蛋白及细胞质连接蛋白-170 (cytoplasmic linker protein-170, CLIP-170)之间的相互作用.通过小干扰RNA (small interference RNA, siRNA)沉默IQGAP1表达则明显延迟损伤愈合.结果提示,IQGAP1信号参与气道上皮细胞损伤修复过程.  相似文献   

4.
Chen WS  Wu RL  Tian D  Wang X 《生理学报》2005,57(4):467-472
为探讨糖原合成酶激酶3(glycogen synthase kinase 3,GSK3)在气道(气管和支气管)上皮细胞鳞状分化中的作用,培养原代猪气道上皮细胞,用GSK3的高度选择性抑制剂氯化锂处理,观察细胞形态变化,用Western blot检测β-连环素、磷酸化GSK3和鳞状分化标记物外皮蛋白的表达、RT-PCR检测鳞状分化标记物小脯氨酸丰富蛋白mRNA的表达、荧光素酶报告基因分析β-连环素/Tcf信号的激活状态。结果显示,锂能诱导猪气道上皮细胞出现鳞状形态、增加小脯氨酸丰富蛋白mRNA和外皮蛋白的表达、促进GSK3的抑制性丝氨酸磷酸化和β-连环素的细胞核内转位;锂能激活β-连环素/Tcf信号,但该作用出现于鳞状分化标记物增加之后。上述结果提示,GSK3可能参与猪气道上皮细胞的鳞状分化。  相似文献   

5.
Li JS  Zhu M  Tian D  Wang MX  Wang F  Li NP  Wu RL 《生理学报》2007,59(2):204-209
对糖原合酶激酶3β(glycogen synthase kinase 3β,6SK3β)在细胞增殖中的作用研究,在不同细胞系和不同刺激因素作用下得出了不同结论,本文旨在探讨GSK3β在人肺腺癌细胞系A549细胞生长中的直接作用。A549细胞瞬时转染持续激活型S9A-GSK3β以及显性负突变型KM-GSK3β两种GSK3β突变型质粒,改变GSK3β活性。24 h后,分别进行细胞计数,流式细胞术及Western blot检测。结果显示,增强GSK3β活性可导致细胞数量下降,G.期细胞百分比升高。细胞周期蛋白D1表达水平被GSK3β下调。结果提示,GSK3β可能以细胞周期蛋白D1依赖性方式引发A549细胞的G,期阻滞,从而发挥生长抑制效应。  相似文献   

6.
观察低氧对大鼠肺动脉平滑肌细胞(pulmonary artery smooth muscle cells,PASMCs)Periostin表达的影响及其相关信号转导机制。胶原酶I法原代培养PASMCs,经低氧(5%O2)分别处理PASMCs2,6,12,24h后,RT-PCR和Western blot法检测Periostin mRNA和蛋白表达。加入PI3K/Akt通路特异性抑制剂LY294002(10μmol/L)进行干预,Western blot分析比较不同条件下低氧处理24h后大鼠PASMCs中Periostin和Akt/P-Akt的蛋白表达。结果表日月,与常氧组比较,低氧处理6h组、12h组和24h纽Periostin mRNA和蛋白的表达均显著上升(P〈0.05,P〈0.01),低氧处理后的PASMCs中Periostin mRNA和蛋白的表达逐渐升高:低氧处理2h组无显著差异(P〉0.05)。用LY294002对PASMCs处理,并低氧24h后,Periostin的表达被显著抑制(P〈0.01),细胞P-Akt的表达下调(P〈0.05),总Akt的蛋白表达没有明显差异(P〉0.05)。推测低氧可诱导大鼠PASMCs中Periostin mRNA和蛋白的表达上调。低氧可能通过激活P13K/Akt通路促进Akt的磷酸化,进而使Periostin在PASMCs中过表达,提示Periostin在低氧性PASMCs增殖过程中可能起着重要作用。  相似文献   

7.
应用RT-PCR、Westem blot、免疫组化分别检测甲状腺乳头状癌组织与癌旁正常甲状腺组织标本中DcR3mRNA及蛋白的表达情况,探讨DcR3在甲状腺乳头状癌组织中的表达及,临床意义。RT-PCR检测显示,甲状腺乳头状癌中DcR3 mRNA的表达明显高于正常甲状腺组织(P〈0.05):Western blot提示,DcR3蛋白在甲状腺乳头状癌中表达比正常甲状腺组织高(P〈0.05);免疫组化显示,DcR3蛋白在甲状腺乳头状癌中高表达(P〈0.05)。DcR3mRNA及蛋白质在甲状腺乳头状癌及正常甲状腺组织间的表达差异有统计学意义(P〈0.05)。DcR3基因及蛋白在甲状腺乳头状癌中高表达,提示DcR3可能促进了甲状腺乳头状癌的发生发展。  相似文献   

8.
探索硒代蛋氨酸(Se-Met)的早期干预对Aβ1-42诱导的Neuro-2A(N2a)细胞损伤的保护作用。将N2a细胞分为对照组、Aβ1-42诱导损伤组、Se.Met组和Se—Met预处理的ADl-42组,CCK.8法检测显示不同浓度Se-Met对N2a细胞活力的影响不同,且Se.Met能减弱Aβ1-42诱导N2a细胞活力的降低(P〈0.01):DCFH.DA标记检测可见Se-Met预处理明显抑制Aβ1-42引起的N2a细胞内总活性氧(reactive oxygen species,ROS)水平增高,Aβ1-42作用24h组效果更显著(P〈0.05);Westernblot检测发现,Se-Met可显著回升Aβ1-42引起的N2a细胞synaptophysin和PSD95水平的降低(P〈0.05;P〈0.05);同时,Se-Met可显著降低Aβ1-42引起的N2a细胞内LC3-II/LC3-I水平的升高(P〈0.05)。因此,Se-Met在一定作用时间和浓度下可以提高N2a细胞的活力,对Aβ1-42引起的N2a细胞ROS水平增高、自噬均有抑制作用,同时缓解Aβ1-42引起的突触损伤;Se-Met对Aβ1-42诱导N2a细胞损伤具有较好的保护作用。  相似文献   

9.
目的探讨吡那地尔对缺血缺氧PC12细胞凋亡及对Bcl-2蛋白表达的影响。方法取传代后3d PC12细胞,分为A(对照组),B(缺血缺氧组),C(KATP通道开放剂),D(KATP通道开放剂+阻断剂组)。采用Annexin—v FITC/PI双染流式细胞分析仪检测凋亡率,应用免疫荧光染色和Western blot检测Bcl-2蛋白表达水平。结果缺血缺氧后B,C,D组细胞凋亡率随时间点增加而增加,24h达高峰。B,C,D组与A组比较均有显著性差异(P〈0.01),C组和B,D组比较有统计学意义(P〈0.01),B,C,D组细胞Bcl-2蛋白表达随时间点增加而增加,12h达高峰。B,C,D组均显著高于对照组(P〈0.01或P〈0.05)。C组表达显著高于B和D组(P〈0.01)。B与D组各时间点细胞凋亡及Bcl—2蛋白表达均无显著性差异(P〉0.05)。结论KATP通道开放剂能抑制缺血缺氧PC12细胞凋亡,这一作用机制可能与增加Bcl—2蛋白表达有关。  相似文献   

10.
目的:研究孕酮(PROG)对新生大鼠低氧缺血后脑内基质金属蛋白酶3(MMP-3)表达的影响。方法:建立新生大鼠低氧缺血性脑损伤动物模型,伊文思兰(EB)染色和电镜观察新生鼠低氧缺血性脑损伤血一脑屏障的通透性改变;免疫印迹(Western blot)方法检测大脑皮层MMP-3表达。结果:电镜显示低氧缺血组血-脑屏障完整性明显破坏:EB染色结果表明低氧缺血组血-脑屏障通透性明显高于假手术组,差异极显著(P〈0.01),孕酮组血-脑屏障通透性明显低于低氧缺血组,有显著性差异(P〈0.05);Western blot结果显示低氧缺血组MMP-3蛋白表达显著高于假手术组(P〈0.01);孕酮组MMP-3蛋白表达显著低于低氧缺血组(P〈0.05)。结论:孕酮通过减少MMP-3的表达,降低血一脑屏障的损伤,这可能是其发挥脑保护作用的机制之一。  相似文献   

11.
12.
The surface of the airway epithelium represents a battleground in which the host intercepts signals from pathogens and activates epithelial defenses to combat infection. Wound repair is an essential function of the airway epithelium in response to injury in chronic airway diseases, and inhaled pathogens such as Pseudomonas bacteria are implicated in the pathobiology of several of these diseases. Because epidermal growth factor receptor (EGFR) activation stimulates wound repair and because LPS activates EGFR, we hypothesized that LPS accelerates wound repair via a surface signaling cascade that causes EGFR phosphorylation. In scrape wounds of NCI-H292 human airway epithelial cells, high concentrations of LPS were toxic and decreased wound repair. However, lower concentrations of LPS accelerated wound repair. This effect was inhibited by treatment with a selective inhibitor of EGFR phosphorylation (AG 1478) and by an EGFR neutralizing Ab. Metalloprotease inhibitors and TNF-alpha-converting enzyme (TACE) small interfering RNA inhibited wound repair, implicating TACE. Additional studies implicated TGF-alpha as the active EGFR ligand cleaved by TACE during wound repair. Reactive oxygen species scavengers, NADPH oxidase inhibitors, and importantly small interfering RNA of dual oxidase 1 inhibited LPS-induced wound repair. Inhibitors of protein kinase C isoforms alphabeta and a TLR-4 neutralizing Ab also inhibited LPS-induced wound repair. Normal human bronchial epithelial cells responded similarly. Thus, LPS accelerates wound repair in airway epithelial cells via a novel TLR-4-->protein kinase C alphabeta-->dual oxidase 1-->reactive oxygen species-->TACE-->TGF-alpha-->EGFR phosphorylation pathway.  相似文献   

13.

Background

The APC tumour suppressor functions in several cellular processes including the regulation of β-catenin in Wnt signalling and in cell adhesion and migration.

Findings

In this study, we establish that in epithelial cells N-terminally phosphorylated β-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated β-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions. We isolated APC-rich protrusions from stimulated cells and detected β-catenin, GSK3β and CK1α, but not axin. The APC/phospho-β-catenin complex in cell protrusions appears to be distinct from the APC/axin/β-catenin destruction complex. GSK3β phosphorylates the APC-associated population of β-catenin, but not the cell junction population. β-catenin associated with APC is rapidly phosphorylated and dephosphorylated. HGF and wound-induced cell migration promote the localised accumulation of APC and phosphorylated β-catenin at the leading edge of migrating cells. APC siRNA and analysis of colon cancer cell lines show that functional APC is required for localised phospho-β-catenin accumulation in cell protrusions.

Conclusions

We conclude that N-terminal phosphorylation of β-catenin does not necessarily lead to its degradation but instead marks distinct functions, such as cell migration and/or adhesion processes. Localised regulation of APC-phospho-β-catenin complexes may contribute to the tumour suppressor activity of APC.  相似文献   

14.
Truncation mutations in the adenomatous polyposis coli protein (APC) are responsible for familial polyposis, a form of inherited colon cancer. In addition to its role in mediating beta-catenin degradation in the Wnt signaling pathway, APC plays a role in regulating microtubules. This was suggested by its localization to the end of dynamic microtubules in actively migrating areas of cells and by the apparent correlation between the dissociation of APC from polymerizing microtubules and their subsequent depolymerization [1, 2]. The microtubule binding domain is deleted in the transforming mutations of APC [3, 4]; however, the direct effect of APC protein on microtubules has never been examined. Here we show that binding of APC to microtubules increases microtubule stability in vivo and in vitro. Deleting the previously identified microtubule binding site from the C-terminal domain of APC does not eliminate its binding to microtubules but decreases the ability of APC to stabilize them significantly. The interaction of APC with microtubules is decreased by phosphorylation of APC by GSK3 beta. These data confirm the hypothesis that APC is involved in stabilizing microtubule ends. They also suggest that binding of APC to microtubules is mediated by at least two distinct sites and is regulated by phosphorylation.  相似文献   

15.
Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and unprimed epitopes and how this impacts tau function, the R96A mutant of GSK3beta was used, a mutation that prevents phosphorylation of substrates at primed sites. Both GSK3beta and GSK3beta-R96A phosphorylated tau efficiently in situ. However, expression of GSK3beta-R96A resulted in significantly less phosphorylation of tau at primed sites compared with GSK3beta. Conversely, GSK3beta-R96A phosphorylated unprimed tau sites to a significantly greater extent than GSK3beta. Prephosphorylating tau with cdk5/p25 impaired the ability of GSK3beta-R96A to phosphorylate tau, whereas GSK3beta-R96A phosphorylated recombinant tau to a significantly greater extent than GSK3beta. Moreover, the amount of tau associated with microtubules was reduced by overexpression of GSK3beta but only when tau was phosphorylated at primed sites, as phosphorylation of tau by GSK3beta-R96A did not negatively regulate the association of tau with microtubules. These results demonstrate that GSK3beta-mediated phosphorylation of tau at primed sites plays a more significant role in regulating the interaction of tau with microtubules than phosphorylation at unprimed epitopes.  相似文献   

16.
In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003) J. Biol. Chem. 278, 12722-12728). The molecular mechanism by which 14-3-3 connects GSK3beta to tau within the complex is not clear. In this study, we find that GSK3beta within the tau phosphorylation complex is phosphorylated on Ser(9). From extracts of rat brain and rat primary cultured neurons, Ser(9)-phosphorylated GSK3beta precipitates with glutathione-agarose beads coated with glutathione S-transferase-14-3-3. Similarly, from rat brain extract, Ser(9)-phosphorylated GSK3beta co-immunoprecipitates with tau. In vitro, 14-3-3 binds to GSK3beta only when the kinase is phosphorylated on Ser(9). In transfected HEK-293 cells, 14-3-3 binds to Ser(9)-phosphorylated GSK3beta and does not bind to GSK3beta (S9A). Tau, on the other hand, binds to both GSK3beta (WT) and GSK3beta (S9A). Moreover, 14-3-3 enhances the binding of tau with Ser(9)-phosphorylated GSK3beta by approximately 3-fold but not with GSK3beta (S9A). Similarly, 14-3-3 stimulates phosphorylation of tau by Ser(9)-phosphorylated GSK3beta but not by GSK3beta (S9A). In transfected HEK-293 cells, Ser(9) phosphorylation suppresses GSK3beta-catalyzed tau phosphorylation in the absence of 14-3-3. In the presence of 14-3-3, however, Ser(9)-phosphorylated GSK3beta remains active and phosphorylates tau. Our data indicate that within the tau phosphorylation complex, 14-3-3 connects Ser(9)-phosphorylated GSK3beta to tau and Ser(9)-phosphorylated GSK3beta phosphorylates tau.  相似文献   

17.

Background

Mechanisms of airway repair are poorly understood. It has been proposed that, following injury, progenitor populations such as club cells (Clara) become undifferentiated, proliferate and re-differentiate to re-epithelialise the airway. The exact phenotype of such cells during repair is unknown however. We hypothesised that airway epithelial cells (AECs) undergo some degree of epithelial-mesenchymal transition (EMT) in order to migrate over a denuded airway and effect re-epithelialisation. Furthermore, based on our previous findings that BMP signalling is an early event in AECs following injury in vivo and that BMP4 down-regulates E-cadherin expression and enhances migration in AECs in vitro, we hypothesised that BMPs could play a role in inducing such a phenotypic switch.

Methods

Normal AECs were isolated from mouse lungs and analysed in a model of a disrupted epithelium. EMT marker expression and BMP signalling were examined by immunofluorescence, Western blotting and RT-PCR.

Results

Following generation of a wound area, AECs at the wound edge migrated and acquired a mesenchymal-like morphology. E-cadherin expression was reduced in migrating cells while vimentin and α-smooth muscle actin (α-SMA) expression was increased. Re-expression of membrane E-cadherin was subsequently observed in some cells in the wound area following re-establishment of the monolayer. A transient increase in the incidence of nuclear phosphorylated Smad1/5/8 was observed in migrating cells compared with confluent cells, indicating active BMP signalling during migration. BMP antagonists noggin and gremlin inhibited cell migration, confirming the involvement of BMP signalling in migration and indicating autocrine signalling, possibly involving BMP7 or BMP4 which were expressed in AECs. Exogenous BMP2, BMP4 and BMP7 induced a mesenchymal-like morphology in AECs, enhanced the rate of cell migration and increased α-SMA protein expression in AECs.

Conclusions

Following disruption of an intact epithelium, migrating AECs at the wound edge acquire an EMT-like phenotype involving altered expression of E-cadherin, vimentin and α-SMA. BMP signalling is involved in AEC migration and is likely to mediate the switch towards an EMT-like phenotype by altering protein expression to facilitate cell migration and wound closure. We propose therefore that acquisition of an EMT-like phenotype by AECs is a normal aspect of wound repair. Furthermore, we suggest that diseases involving fibrosis may arise because the EMT phase of repair is prolonged by chronic injury/inflammation, rather than being caused by it, as is the current paradigm.  相似文献   

18.
A major determinant of neuronal morphology is the cytoskeleton. And one of the main regulatory mechanisms of cytoskeletal proteins is the modification of their phosphorylation state via changes in the relative activities of protein kinases and phosphatases in neurons. In particular, the microtubule-associated protein 2 (MAP2) family of proteins are abundant cytoskeletal components predominantly expressed in neurons and have been found to be substrates for most of protein kinases and phosphatases present in neurons, including glycogen-synthase kinase 3 (GSK3). It has been suggested that changes in GSK3-mediated MAP phosphorylation may modify MT stability and could control neuronal development. We have previously shown that MAP2 is phosphorylated in vitro and in situ by GSK3 at Thr1620 and Thr1623, located in the proline-rich region of MAP2 and recognized by antibody 305. However, the function of the phosphorylation of this site of MAP2 is still unknown. In this study, non-neuronal COS-1 cells have been co-transfected with cDNAs encoding MAP2C and either wild type or mutated GSK3beta to analyze possible effects on microtubule stability and on the association of MAP2 with microtubules. We have found that GSK3beta phosphorylates MAP2C in co-transfected cells. Moreover, this phosphorylation is inhibited by the specific GSK3 inhibitor lithium chloride. Additionally, the formation of microtubule bundles, which is observed after transfection with MAP2C, was decreased when MAP2C was co-transfected with GSK3beta wild type. Microtubule bundles were not observed in cells expressing MAP2C phosphorylated at the site recognized by antibody 305. The absence of microtubule bundles was reverted after treatment of MAP2C/GSK3beta wild type transfected cells with lithium chloride. Highly phosphorylated MAP2C species, which were phosphorylated at the site recognized by antibody 305, appeared in cells co-transfected with MAP2C and GSK3beta wild type. Interestingly, these MAP2C species were enriched in cytoskeleton-unbound protein preparations. These data suggests that GSK3-mediated phosphorylation of MAP2 may modify its binding to microtubules and regulate microtubule stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号