首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From granular sludge of an upflow anaerobic sludge bed (UASB) reactor treating paper-mill wastewater, a sulfate-reducing bacterium (strain ASRB1) was isolated with acetate as sole carbon and energy source. The bacterium was rod-shaped, (1.4–1.9×2.5–3.4 μm), nonmotile, and gram-negative. Optimum growth with acetate occurred around 37°C in freshwater medium (doubling time: 3.5–5.0 days). The bacterium grew on a range of organic acids, such as acetate, propionate, and butyrate, and on alcohols, and grew autotrophically with H2, CO2 and sulfate. Fastest growth occurred with formate, propionate, and ethanol (doubling time: approx. 1.5 days). Strain ASRB1 clusters with the delta subdivision of Proteobacteria and is closely related toSyntrophobacter wolinii a syntrophic propionate oxidizer. Strain ASRB1 was characterized as a new genus and species:Desulforhabdus amnigenus.  相似文献   

2.
A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S2, was isolated from coal heap drainage. The bacterium was motile, Gram-negative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 μm, and grew optimally at 42–45°C and an initial pH of 2.5. The strain S2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (>99% similarity in gene sequence). The combination of the strain S2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.  相似文献   

3.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

4.
A new methanogen, designated as strain P2F9701a (= OCM 745), was isolated from a water sample of estuarine environment in Elrin Shi, Taiwan. Cells of strain P2F9701a were motile coccus (0.7∼1.1 μm) with tufts of flagella. Gas vacuoles were observed, and the protein cell wall was composed of S-layer protein subunit with Mr of 74,700. Cells catabolized formate and H2+CO2 to produce methane, but not acetate, methanol, and trimethylamine. Strain P2F9701a grew in the range of 30–42°C, with optimal growth temperature at 37°C, but did not grow below 28°C or above 42°C. This estuarine isolate P2F9701a tolerated well the NaCl concentration between 0.02 and 1.03 m, and the optimal salt for growth was 0.17 m. Although phylogenetic analytic results indicated that P2F9701a belongs to the mesophilic, hydrogenotrophic marine methanogen of Methanococcus voltaei, the occurrence of gas vacuoles, tufts of flagella, eury-halotolerant and steno-thermotolerant characters of strain P2F9701a are different from mesophilic Methanococcus spp. that had been reported. Received: 19 October 2000 / Accepted: 17 November 2000  相似文献   

5.
A thermophilic spore-forming bacterium (strain AMP) was isolated from a thermophilic methanogenic bioreactor that was fed with cobalt-deprived synthetic medium containing methanol as substrate. 16S rRNA gene analysis revealed that strain AMP was closely related to the acetogenic bacterium Moorella thermoacetica DSM 521T (98.3% sequence similarity). DNA–DNA hybridization showed 75.2 ± 4.7% similarity to M. thermoacetica DSM 521T, suggesting that strain AMP is a M. thermoacetica strain. Strain AMP has a unique one-carbon metabolism compared to other Moorella species. In media without cobalt growth of strain AMP on methanol was only sustained in coculture with a hydrogen-consuming methanogen, while in media with cobalt it grew acetogenically in the absence of the methanogen. Addition of thiosulfate led to sulfide formation and less acetate formation. Growth of strain AMP with CO resulted in the formation of hydrogen as the main product, while other CO-utilizing Moorella strains produce acetate as product. Formate supported growth only in the presence of thiosulfate or in coculture with the methanogen. Strain AMP did not grow with H2/CO2, unlike M. thermoacetica (DSM 521T). The lack of growth with H2/CO2 likely is due to the absence of cytochrome b in strain AMP.  相似文献   

6.
A halophilic nonpigmented rod-shaped (0.8–1.0 × 2.0–2.5 μm), gram-negative bacterium with a single polar flagellum (strain RS91) was isolated from acidic brines of flotation enrichment of potassium minerals (Silvinit Co., Solikamsk, Russia). The strain grew in the media with 2 to 25% NaCl (optimum at 10–12%), 20–45°C (optimum at 37°C), and pH 5.5–8.5 (optimum 6.5–7.5). It was an aerobe or facultative anaerobe incapable of fermentation. The strain was characterized by the absence of growth on glucose, fructose, and citrate, extensive aerobic growth on n-hexadecane and in the mineral medium with H2 + O2 + CO2 in the gas phase, anaerobic nitrate reduction with acetate or hydrogen (under H2 + CO2 + N2), and variable fatty acid composition. The DNA G+C content was 68.2 mol %. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that while strain RS91 was most closely related to Arhodomonas aquaeolei HA-1T (98.3%) and Nitrococcus mobilis (98.1%), it was only remotely related to the halophilic phototroph Halorhodospira halophila (90.6%). Based on the combination of its phenotypic and genotypic characteristics, the organism was classified as a new species of the genus Arhodomonas, family Ectothiorhodospiraceae with the proposed name Arhodomonas recens sp. nov. The type strain is RS91T (= IEGM 796T = VKPM B-11280T).  相似文献   

7.
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.  相似文献   

8.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via β-oxidation and subsequently completely degraded into acetate, CH4, and CO2. Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH4, and CO2. A new anaerobic degradation pathway of cinnamate into benzoate via β-oxidation by a pure culture of P. cinnamivorans is proposed. Received: 27 December 2001 / Accepted: 28 March 2002  相似文献   

9.
A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO2. The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.  相似文献   

10.
A new methanogenic isolate, designated as strain N2M9705 (=OCM 668), was isolated from an aquaculture fishpond near Wang-gong, Taiwan. This strain grew on trimethylamine and methanol, but it did not catabolize H2-CO2, acetate, or formate. The cells were stained Gram-negative, nonmotile, irregular coccus 0.6–0.8 μm in diameter. Gas vacuoles were observed and cell aggregated to form various sizes of granules. Cells grew optimally at 32°–37°C with 1% NaCl. The pH range of growth was 6.2–7.4, and higher pH inhibited the cell growth. The cells grew well in minimal medium, but growth was greatly stimulated by yeast extract and peptone. A comparison of 16S rDNA sequences of this organism phylogenetically related to Methanosarcina mazei. This is the first report of methyltrophic methanogenic isolated from an aquaculture fishpond. Received: 16 March 1999 / Accepted: 16 April 1999  相似文献   

11.
A methanogen, strain AK-1, was isolated from permanently cold marine sediments, 38- to 45-cm below the sediment surface at Skan Bay, Alaska. The cells were highly irregular, nonmotile coccoids (diameter, 1 to 1.2 μm), occurring singly. Cells grew by reducing CO2 with H2 or formate as electron donor. Growth on formate was much slower than that on H2. Acetate, methanol, ethanol, 1- or 2-propanol, 1- or 2-butanol and trimethylamine were not catabolized. The cells required acetate, thiamine, riboflavin, a high concentration of vitamin B12, and peptones for growth; yeast extract stimulated growth but was not required. The cells grew fastest at 25 °C (range 5 °C to 25 °C), at a pH of 6.0 – 6.6 (growth range, pH 5.5 – 7.5), and at a salinity of 0.25 – 1.25 M Na+. Cells of this and other H2-using methanogens from saline environments metabolized H2 to a very low threshold pressure (less than 1 Pa) that was dependent on the methane partial pressure. We propose that the threshold pressure may be limited by the energetics of catabolism. The sequence of the 16S rDNA gene of strain AK-1 was most similar (98%) to the sequences of Methanogenium cariaci JR-1 and Methanogenium frigidum Ace-2. DNA–DNA hybridization between strain AK-1 and these two strains showed only 34.9% similarity to strain JR-1 and 56.5% similarity to strain Ace-2. These analyses indicated strain AK-1 should be classified as a new species within the genus Methanogenium. Phenotypic differences between strain AK-1 and these strains (including growth temperature, salinity range, pH range, and nutrient requirements) support this. Therefore, a new species, Methanogenium marinum, is proposed with strain AK-1 as type strain. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
An anaerobic, extremely thermophilic, xylanolytic nonspore-forming bacterium, strain X6B, was isolated from a 70°C Icelandic hot spring sediment. The bacterium was rod-shaped, 3.6–5.9 m long and 0.7 to 1.0 m wide, and cells grew singly, in pairs, and occasionally formed chains. The bacterium was nonmotile with no flagella. Cells from mid-to late exponential gowth-phase cultures stained gram-negative but had a gram-positive like cell wall structure in transmission electron photomicrographs. The bacterium grew between 50°C and 78°C with an optimum temperature at about 65°C to 68°C. Growth occurred between pH 5.2 and 8.5 with an optimum pH close to 7. During growth on beech wood xylan, glucose and d-xylose, the isolate produced CO2, acetate and H2 as major fermentation products, and a small amounts of ethanol; lactate was not produced. X6B did not reduce acetone to isopropanol or sulphate or thiosulfate to sulfide. The base composition of X6B's cellular DNA was 35.7 mol% guanine + cytosine. The properties of this strain do not fit any previously described species. The name proposed for the isolated bacterium was Thermoanaerobium acetigenum, spec. nov.  相似文献   

13.
To clarify the ecological significance of the association of sulfate-reducing bacteria (SRB) with sediment particle size, SRB utilizing lactate (l-SRB), propionate (p-SRB) and acetate (a-SRB) were examined with different sizes of sediment particles in a hypertrophic freshwater lake using the anaerobic plate count method. The numbers ofl-SRB anda-SRB were 104–105 colony forming units (CFU) per ml in the 0–3 cm layer and 102–103 CFU ml−1 in the 10–13 cm layer while the numbers ofp-SRB were one or two orders lower than those ofl-SRB anda-SRB. A sediment suspension was fractionated into four fractions (<1, 1–10, 10–94 and >94 μm). The highest proportions ofl-SRB anda-SRB were found in the 10–94 μm fraction: 66–97% forl-SRB and 53–98% fora-SRB. The highest proportion ofp-SRB was found in the >94 μm fraction (70–74%). These results indicate that most SRB were associated with sediment particles. One isolate from an acetate-utilizing enrichment culture was similar toDesulfotomaculum acetoxidans, a spore-forming sulfate-reducing bacterium. When lactate and sulfate were added to sediment samples,l-SRB anda-SRB in the <10 μm-fraction grew more rapidly than those in whole sediment for the first 2 days. This result suggests that nutrients uptake by free-living and small particle-associated (<10 μm) SRB is higher than that by SRB associated with larger particles.  相似文献   

14.
A new type of gas-vacuolated, sulfate-reducing bacterium was isolated at 10° C from reduced mud (E0 < 0) obtained from a temperate estuary with thiosulfate and lactate as substrates. The strain was moderately psychrophilic with optimum growth at 18–19° C and a maximum growth temperature of 24° C. Propionate, lactate, and alcohols served as electron donors and carbon sources. The organism grew heterotrophically only with hydrogen as electron donor. Propionate and lactate were incompletely oxidized to acetate; traces of lactate were fermented to propionate, CO2, and possibly acetate in the presence of sulfate. Pyruvate was utilized both with and without an electron acceptor present. The strain did not contain desulfoviridin. The G+C content was 48.4 mol%. The differences in the 16S rRNA sequence of the isolate compared with that of its closest phylogenetic neighbors, bacteria of the genus Desulfobulbus, support the assignment of the isolate to a new genus. The isolate is described as the type strain of the new species and genus, Desulforhopalus vacuolatus. Received: 4 March 1996 / Accepted: 17 June 1996  相似文献   

15.
A novel strictly anaerobic bacterium designated SPDX02-08T was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1–2 × 2–6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08T grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08T completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08T required yeast extract to oxidize formate and H2 but did not grow autotrophically on H2. Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08T were iso-C15:0, C15:0, and C16:0. Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08T belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08T and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08T is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937T = JCM 16410T). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08T is HM056226.  相似文献   

16.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   

17.
An obligately anaerobic thermophilic sporeforming sulfate-reducing bacterium, named strain CAMZ, was isolated from a benzoate enrichment from a 58°C thermophilic anaerobic bioreactor. The cells of strain CAMZ were 0.7 m by 2–5 m rods with pointed ends, forming single cells or pairs. Spores were central, spherical, and caused swelling of the cells. The Gram stain was negative. Electron donors used included lactate, pyruvate, acetate and other short chain fatty acids, short chain alcohols, alanine, and H2/CO2. Lactate and pyruvate were oxidized completely to CO2 with sulfate as electron acceptor. Sulfate was required for growth on H2/CO2, and both acetate and sulfide were produced from H2/CO2-sulfate. Sulfate, thiosulfate, or elemental sulfur served as electron acceptors with lactate as the donor while sulfite, nitrate, nitrite, betaine, or a hydrogenotrophic methanogen did not. The optimum temperature for growth of strain CAMZ was 55–60°C and the optimum pH value was 6.5. The specific activities of carbon monoxide dehydrogenase of cells of strain CAMZ grown on lactate, H2/CO2, or acetate with sulfate were 7.2, 18.1, and 30.8 mol methyl viologen reduced min–1 [mg protein]–1, respectively, indicating the presence of the CO/Acetyl-CoA pathway in this organism. The mol%-G+C of strain CAMZ's DNA was 49.7. The new species name Desulfotomaculum thermoacetoxidans is proposed for strain CAMZ.  相似文献   

18.
A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58T was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7–0.8 μm in width and 5.5–12 μm in length and produced terminal spherical spores of 1.2–1.6 μm in diameter with the mother cell swelling around 2 μm in diameter (drumstick-type morphology). Cells grew optimally at pH25°C 8.2–8.4 and temperature 50–52°C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO2 (both with or without H2) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, d-galactose, d-mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58T is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58T (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.The Genbank accession number for the 16S rRNA gene sequence of strain JW/WZ-YB58T is DQ221694.  相似文献   

19.
A novel gram-negative, thermophilic, acetate-oxidizing, sulfate-reducing bacterium, strain A8444, isolated from hot North Sea oil field water, is described. The rod-shaped cells averaged 1 μm in width and 2.5 μm in length. They were motile by means of a single polar flagellum. Growth was observed between 44 and 74°C, with an optimum at 60°C. Spores were not produced. Sulfate and sulfite were used as electron acceptors. Sulfur, thiosulfate, nitrate, fumarate, and pyruvate were not reduced. In the presence of sulfate, growth was observed with acetate, lactate, pyruvate, butyrate, succinate, malate, fumarate, valerate, caproate, heptanoate, octanoate, nonadecanoate, decanoate, tridecanoate, pentadecanoate, palmitate, heptadecanoate, stearate, and ethanol. Pyruvate, lactate, and fumarate did not support fermentative growth. Cytochromes of the c-type were present. Desulfoviridin, desulforubidin, P582, and desulfofuscidin were not present. The G+C content of the DNA was 51 mol%. Sequence analysis of 16S rDNA showed that phylogenetically strain A8444 belongs to the delta subdivision of the Proteobacteria. The closest relatives are Desulfacinum infernum and Syntrophobacter wolinii. Strain A8444 is described as the type strain of the new taxon Thermodesulforhabdus norvegicus gen. nov., sp. nov. Received: 4 May 1995 / Accepted: 11 July 1995  相似文献   

20.
A novel facultative microaerophilic nitrate-reducing bacterium designated CA62NT was isolated from a thermal spring in France. Cells were non-motile rods (2–3 × 0.2 μm) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62NT grew at temperatures between 50 and 75°C (optimum 65°C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl−1. Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62NT used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62NT was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and “S. toebii” as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62NT is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号